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CHAPTER 5 NONLINEAR SYSTEMS

(b) Note that the level sets of H are the
same curves as those of the level sets of
xy.

(¢) Note that there are many curves of equi-
librium points for this system: besides
the origin, whenever xy = nr + m/2,
the vector field vanishes.

X

3. @IfH(x,y)=xcosy+ y2, then

oH

5 ey
and so

dy oH

dr 7 1gk)
Similarly,

: dx
=—xsiny 42y = T

| @
&%

(b)

(¢) The equilibrium points occur at points
of the form ((1 - 4n)7, (2n — })7) and

(1 + 4n)m, 2n + %)n) where n is an
integer.
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4. (a) The Jacobian matrix is

At (0, 0), the linearization is

b 0 1
H | ~g/l: 0
(b) Note that the equation does not depend on m. Using 8 = 9.8, the eigenvalues for the lineariza-
tion are +i,/9.8/7 and the period of the solutions is 27 /4/9.8/1. Hence we need
* o X
1

21/\/9.8/1 = 1

orl =9.8/4n2
5. A large amplitude swing will take 6 near +7, v = 0, the equilibrium point corresponding to the
_ pendulum being balanced straight up. Near equilibrium points the vector field is very short, so solu-
/ tions move very slowly. A solution passing close to +7, v =

6. Large amplitude oscillations of an ideal
oscillations because they come close to t
clock fast.

pendulum have much longer period than small amplitude
he saddle points. Hence, small amplitude swings make the

7. (a) The linearization at the origin is

de
— =0
dt
dv it g
m points occur at points ' dr 1
k. =i
4"1)”’ @n —3)n ) and The eigenvalues of this system are +i v&/1, so the natural period is 27/ (v/g/1), which can
N + 5)m) where n is an

also be written as 277/] /+/8- Doubling the arm length corresponds to replacing ! with 2/, but

the computations above stay the same. The natural period for arm length 2/ is 277+/2] /+/8-
Doubling the arm length multiplies the natural period by /2.
4 (b) Compute

d@rl//3) S
dl NN

8. Let G be the gravitational constant on the moon. Note that G <
tion of the ideal pendulum on the moon is 277 /,/G/I. Since G

2n/\/G/l > 2n/\/G/1.

Since the period of the pendulum is now longer, the clock runs more slowly.

& = 9.8. The period of the lineariza-
< g, we have

9. We know that the equilibrium points of a Hamiltonian
portrait (b) has a spiral source, so it is not Hamiltonian.
SO it is not Hamiltonian. Phase portraits (a) and (d) migh
imagine a function which has the solution curves as level

system cannot be sources or sinks. Phase
Phase portrait (c) has a sink and a source,

t come from Hamiltonian systems. (Try to
sets.)
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. First note that 3 :

d(sinx cos y) 9(2x —cosx siny)

———— - =COSXCOSy = — :
ax g ay

Hence, the system is Hamiltonian. Integrating dx /dt with respect to y yields

Hix,y)= sinxsiny + c(x).

If we differentiate H (x, y) with respect to x, we get

cosxsiny + c’(x),

which we want to be the negative of dy/dt = 2x — cos x sin y. Hence ¢’(x) = —2x, and we pick
antiderivative ¢(x) = —x2. A Hamiltonian function is

H(x,y) = —x% 4+ sinx siny.

. First note that %
aGr = 398yl po ()

dx ay
Hence, the system is Hamiltonian. Integrating dx /dt with respect to y yields

H(x,y)=xy—y> +c(x).

If we differentiate H (x, y) with respect to x, we get
y+c'(x),

which we want to be the negative of dy/dt = —y. Hence c¢’(x) = 0, and we pick the antideriva
¢(x) = 0. A Hamiltonian function is

Hax,y)=xy—y.

12. First we check to see if the partial derivative with respect to x of the first component of the ve
field is the negative of the partial derivative with respect to y of the second component. We have

while

Since these are not equal, the system is not Hamiltonian.

13. First we check to see if the partial derivative with respect to x of the first component of the v
field is the negative of the partial derivative with respect to y of the second component. We have

d(xcosy)
—————— =cCosy
ox
while
d(—ycosx)
-~ =COSX.
dy

Since these two are not equal, the system is not Hamiltonian.
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5.4 Dissipative Systems
13. (a) We have VG (x,y) =

(2x, _2}'), SO
dx
=
dt i
dy
— =Dy,
dt %

(b) The System is linear and hag eigenvalues 2 and

—2. Hence the origin is a saddle.
(¢) The graph of G is a saddle surface turning up i

n the x-direction and down in the y-directio

X
2 5

X
3/-7 —1 1
-1
(d) The line of eigenvectors for eigenvalue 2 js the x-axis, the line of eigenvectors for eigenval
—2 is the y-axis (see Chapter 3).

Phase portrait shown with level sets of G in gray.

14. (a) The gradient VG (x, y) =

(2x,2y) so
dx
e =5
dt 51
o
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(b) The system is linear and has both eigenvalues 2. Hence the origin is a source.
(¢) The graph of G is a paraboloid.

(d)

15. (a) The Jacobian matrix is

i 8 ’
0 =3 |

At the origin the coefficient matrix of the linearization is

(s )

which has eigenvalues 1 and —1. Hence, the origin is a saddle.
(b) At (1, 0) the Jacobian matrix is
=210
0 -1

which has eigenvalues —2 and — 1. Hence, the point (1, 0) is a sink.
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(c) Since the eigenvalue —1 has eigenvectors along the y-axis, (and

approach (1, 0) as ¢ tends to infinity do so in the y direction (the o
on the x-axis).

—2 < —1), solutions which
nly exception being solutions

(d) The Jacobian matrix at (=1, 0) is the same as at (1, 0).

16. (a) (b)

1 2 3

17.  (a) The system is formed by taking the gradient of . Hence, the system is

d
d—;‘r=2x—)\r3—6,\fy2

dy 3 2
1 e S e I
dt B ; y X"y

(b)

LOX

(¢) From the phase portrait, we see that there are four sinks. Hence, there are four dead fish.
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19. (a) Since f = 9G/dx and g = 3G /dy,

Bf § 9%G 1 9°G | 9g
dy  dydx 9xdy ox’

(b) We compute

Sy
dy i
0
LAY
ox

and these partials are not equal. By part (a), the system is not a gradient system.

20. Note the loop consisting of a single solution curve emanating and returning to the equilibrium point
at the origin. The gradient function must decrease along this solution, but note that as time goes to
infinity in both directions, the solution tends to the same point. Hence the gradient must be constant
on this solution, which cannot happen.

21. Let (y(2), v(¢)) be a solution of the “damped” system (with £k > 0). Compute

0Hdy 0Hdv

d
E(H(y(t), v(t)) = 5 s

= —kv.

Hence, for this system, H is a Lyapunov function.

22. The solutions of the Hamiltonian system lie on the level curves of H while the solutions of the gradi-
ent system are perpendicular to the level sets of H. Therefore, the solutions of the two systems meet
at right angles at all non-equilibrium points.

23. Let (x1(2), x2(2), p1(2), p2(t)) be a solution and differentiate
H (x1(), x2(2), p1(2), p2(t))

with respect to ¢ using the Chain Rule. That is,

dH % 0H dx; o 0H dx> 5 dH dp; 0H dp>
dt  9x1 dt dxp dt dpy dt = dpy dt
Note that

oH
=ki(x1— Li) — k(X ~ x16=L2)

ax1
oH
9x2

= ka(x2 —x1 — L3)




