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Abstract

Soil is the largest reservoir of organic carbon (C) in the terrestrial biosphere and soil C

has a relatively long mean residence time. Rising atmospheric carbon dioxide (CO2)

concentrations generally increase plant growth and C input to soil, suggesting that soil

might help mitigate atmospheric CO2 rise and global warming. But to what extent

mitigation will occur is unclear. The large size of the soil C pool not only makes it a

potential buffer against rising atmospheric CO2, but also makes it difficult to measure

changes amid the existing background. Meta-analysis is one tool that can overcome the

limited power of single studies. Four recent meta-analyses addressed this issue but

reached somewhat different conclusions about the effect of elevated CO2 on soil C

accumulation, especially regarding the role of nitrogen (N) inputs. Here, we assess the

extent of differences between these conclusions and propose a new analysis of the data.

The four meta-analyses included different studies, derived different effect size estimates

from common studies, used different weighting functions and metrics of effect size, and

used different approaches to address nonindependence of effect sizes. Although all

factors influenced the mean effect size estimates and subsequent inferences, the

approach to independence had the largest influence. We recommend that meta-analysts

critically assess and report choices about effect size metrics and weighting functions, and

criteria for study selection and independence. Such decisions need to be justified

carefully because they affect the basis for inference. Our new analysis, with a combined

data set, confirms that the effect of elevated CO2 on net soil C accumulation increases

with the addition of N fertilizers. Although the effect at low N inputs was not significant,

statistical power to detect biogeochemically important effect sizes at low N is limited,

even with meta-analysis, suggesting the continued need for long-term experiments.
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Introduction

Soils contain nearly three times the amount of carbon

(C) as the atmosphere (Jobbágy & Jackson, 2000;

Houghton, 2007), and, on average, C in soils turns over

much more slowly than atmospheric carbon dioxide

(CO2). Soil C, and the processes that influence it, affect

the CO2 content of the atmosphere, C sequestration, and

climate warming. Environmental changes that influence

soil C dynamics could slow atmospheric CO2 rise and

associated warming by promoting soil C storage (e.g.

Cramer et al., 2001; Johnson & Curtis, 2001), or they

could exacerbate warming by causing soil C to decline

(e.g. Mack et al., 2004; Knorr et al., 2005).

Yet, the very properties that make soil C a key

reservoir in the global C cycle – namely its large size

and slow turnover – also make it difficult to study
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empirically. Small changes in the size or turnover of

soil C are biogeochemically significant but difficult to

detect in experiments (Hungate et al., 1996; Smith,

2004). Does elevated atmospheric CO2 increase soil C?

By how much and under what conditions? These ques-

tions have been the subject of recent meta-analyses of

CO2 enrichment experiments (Jastrow et al., 2005; de

Graaff et al., 2006; Luo et al., 2006; van Groenigen et al.,

2006). Meta-analysis is a useful tool in this case, both

because it has the potential to overcome some of the

limitations of low statistical power in individual experi-

ments, and because it has the advantage of testing

whether responses are general across experiments

(e.g. Osenberg et al., 1999). These four meta-analyses

were conducted at about the same time and, therefore,

had access to the same data sources. Thus, they present

an opportunity to compare the approaches used in each

case and to assess the importance of choices made when

applying meta-analysis, choices that are general to

applications of the technique in any field (e.g. Englund

et al., 1999).

These four meta-analyses all concluded that elevated

CO2 increased accumulation of soil C when averaged

across all studies. The three meta-analyses that evalu-

ated the role of N fertilization found that the effect of

CO2 on soil C accumulation was greatest when N

fertilizer was also added (Table 1). Thus, these four

meta-analyses reached similar conclusions on some key

points. However, there was less agreement about the

magnitude (and significance) of the effect of elevated

CO2 in unmanaged ecosystems (e.g. in the absence of

N addition), a point illustrated by citation patterns in

the literature: Luo et al. (2006) and Jastrow et al. (2005)

are frequently cited as evidence that elevated CO2

increases soil C. In contrast, van Groenigen et al.

(2006) is cited as evidence that responses are absent

under low N conditions; de Graaff et al. (2006) is

intermediate (Table 1). Thus, the conclusions derived

from these meta-analyses are perceived to differ in the

magnitude of the soil C response and how this response

is influenced by N inputs.

Therefore, our first goal was to assess the influence

of elevated CO2 on soil C accumulation under low N

conditions, examining the sensitivity of these estimates

to different approaches used in the meta-analyses. For

example, the four studies used different metrics to

measure the effect of elevated CO2 on soil C, and used

different weighting functions to quantify the relative

contribution of each study and how much influence

each should have on the overall analysis. These four

studies also used different criteria for including obser-

vations, extracted the data in different ways, and made

different judgments about independence, all possibly

influencing the magnitude of – and confidence in – the

mean effect size estimate. How much influence did each

of these factors have on the outcome of the meta-

analyses, and thus on the inferences made about CO2

effects on soil C?

Table 1 Summary of four recent meta-analyses on the effect of carbon dioxide (CO2) on soil carbon (C) accumulation

Study N Metric analyzed

Weighting

function

Metric interpreted

Nitrogen

dependence?

Cited as support of

Relative Absolute

Increased

soil C

No effect

without N

de Graaff

et al. (2006)

67 Ln ((E�A)/

At 1 1)

Time, n 1 1.20% yr�1 nr 1 Greater at high N,

factorial test

3 4

Jastrow

et al. (2005)

35 ln(E/A) 1/Var 1 5.6% 1 19 g C m�2 yr�1 Not tested 15 1

Luo

et al. (2006)

40 ln(E/A) 1/Var 1 5.6% 1 200 g C m�2 Greater at high N,

factorial test

12 1

van Groenigen

et al. (2006)

80 Ln ((E�A)/

At 1 1)

Time, n;

and 1/Var

1 1.17% yr�1* nr Greater at high N

across all studies

0 18

N indicates the number of observations included in the meta-analysis. ‘Metric analyzed’ refers to the effect size metric used in the

meta-analysis to determine the significance of the effect, with observations weighted by the ‘Weighting function.’ By contrast,

‘Metric interpreted’ shows the summary form of the result used to explain its significance in the text, even though in each case this

was not the metric actually analyzed statistically. We argue that metrics of effect size should be identical to expressions that capture

the biogeochemical meaning of the result (Osenberg et al., 1997, 1999). ‘Nitrogen dependence’ summarizes the findings about the

importance of nitrogen on the response of soil C to elevated CO2, indicating whether the dependence was tested across all studies or

restricted to studies that employed a CO2�N factorial design. ‘Cited as support of’ describes how citations to date (December 2008

in SciSearch) draw on these studies as support of two contrasting conclusions: elevated CO2 increases soil C, or elevated CO2 has no

effect on soil C in the absence of added N.

*Weighted average effect size for the three N levels: 0.12% at low N, 2.14% at medium N, and 2.91% at high N.
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Our second goal was to evaluate statistical power and

biogeochemical significance. If low statistical power

limits inferences drawn from individual experiments,

it may also limit inferences drawn from a meta-analysis,

even with the advantages of multiple studies. In the

case of elevated CO2 and soil C, finding no significant

effect in the absence of exogenous N inputs could mean

the effect is so small that it is not important. Alternatively,

it could mean that estimates are highly variable, with a

biogeochemically important result being indistinguish-

able from ‘no effect.’ To distinguish these possibilities, we

compared estimated effects (and confidence intervals)

with the residual terrestrial C sink (Schimel et al., 2001;

Houghton, 2007) as a benchmark for biogeochemically

significant changes in soil C caused by elevated CO2.

Methods

Data compilation

We compiled data used in the four meta-analyses,

including treatment means, sample sizes, variances,

and experimental duration. We also constructed a com-

posite dataset, comprising all observations included in

any of the four individual meta-analyses. The compo-

site data set included each effect size estimate from each

of the four meta-analyses that represented an indepen-

dent observation based on consensus criteria developed

for this compilation. Independent observations included

each possible elevated vs. ambient CO2 treatment com-

parison in multifactor designs as long as the ambient CO2

treatments were independent. In the case of multiple

levels of elevated CO2 and a single, ambient control, we

used the average of the elevated CO2 treatments vs. the

single ambient CO2 treatment, because multiple effect

size estimates would rely on a single, nonindependent

control, and because selecting a single CO2 level would

be arbitrary (because the multiple treatment levels were

within the range of treatment CO2 concentrations from

other experiments with only a single elevated CO2 treat-

ment). We included experiments from all conditions,

whether free air CO2 enrichment (FACE), open top

chambers (OTC), or greenhouse and growth chamber

conditions. If only one meta-analysis included an experi-

ment [e.g. Luo et al. (2006) was the only meta-analysis to

include results from the salt marsh study (Drake et al.,

1997)], that sole observation was included in the compo-

site data set. In cases where more than one meta-analysis

included an observation, we used the average of treat-

ment means and variances in the composite data set, and

then calculated effect sizes as described below. In some

cases, the meta-analyses included multiple observations

of effect sizes from a single study which by our criteria

would not be considered independent, because the

observations were all obtained from a single experimen-

tal treatment. These cases of nonindependence included

multiple observations over time, from different soil

depths, from different cover types, or from different soil

fractions (e.g. mineral vs. organic). For meta-analyses that

included such multiple nonindependent observations,

we used the average of nonindependent effect size esti-

mates (and variances) to represent that meta-analysis in

the combined data set. For brevity, hereafter we refer to

each data set only by the last name of the first author of

the corresponding published paper (i.e. de Graaff,

Jastrow, Luo, and van Groenigen).

Effect sizes

The four meta-analyses used different metrics for the

effect of elevated CO2 on soil C (Table 1). Even within

each meta-analysis, often one effect size metric was

selected for statistical purposes, but responses were

converted to another to aid interpretation. The choice of

an effect size metric can influence the outcome of a meta-

analysis (e.g. Osenberg et al., 1997, 1999), so we compared

how the results of each of the previous meta-analyses was

affected by choosing different effect size metrics. We

compared three different metrics of effect size:

Log Ratio. Jastrow and Luo used the log of the

response ratio:

XLR ¼ LnðE=AÞ; ð1Þ

where E is the mean soil C in the elevated CO2 treat-

ment and A is the mean soil C in the ambient CO2

treatment. The log-ratio starts with an estimate of the

relative change in C between the two treatment (E/A)

and log-transforms it to improve its statistical behavior

(Hedges et al., 1999). We note that this metric is perhaps

best used to evaluate equilibrial changes, i.e. after

trajectories following perturbations have restabilized

(Osenberg et al., 1997, 1999).

Relative accumulation rate

Van Groenigen and de Graaff assumed that C accumu-

lated linearly through time (and at a rate proportional to

initial soil C concentrations). They calculated the effect

of CO2 as

CO2effect ¼ lnðððE� AÞ=tAÞ þ 1Þ; ð2Þ

where E and A are as defined above and t is the

duration of the experimental treatment (in years). Yet,

to explain the biogeochemical significance of their find-

ings, they used the relative accumulation rate

XRAR ¼ ðEA=AtÞ100%: ð3Þ

This metric is more easily interpreted, and, over the

range of effect sizes observed, it has nearly a linear
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relationship with Eqn (2). Thus, in this analysis we used

the relative accumulation rate, with units of percent

change per year. Note that this metric is related to Eqn

(1) approximately by dividing by time [i.e. Eqn (3) is a

rate; Eqn (1) is not], because (E�A)/A approximates

ln(E/A) for small differences between E and A.

Absolute accumulation rate

Although both Jastrow and Luo used the log of the

response ratio to analyze findings statistically, they also

both used the absolute rate of C accumulation to explain

the biogeochemical significance of their results

XAAR ¼ ðE� AÞ=t; ð4Þ

where E and A are soil C pools in g m�2 and t is the

duration of the experiment, such that the metric has

units of g C m�2 yr�1. In the Jastrow meta-analysis,

mean values of E and A were corrected for pretreatment

soil C differences (when these data were available) by

making additive adjustments to the average of all pre-

treatment soil C values before calculation of effect

sizes (Jastrow et al., 2005). Except where noted, these

adjustments are included in the analyses of the Jastrow

meta-analysis and apply to all effect size metrics.

Determining biogeochemical significance

Choosing an effect size metric is complex and open to

debate, but we argue that it should estimate processes

of interest and not be restricted to one or a few metrics

that may be too easily applied to any scientific question

(Osenberg et al., 1997, 1999). In this case, a major process

of interest is future soil C accumulation in response to

rising atmospheric CO2 concentrations. To place results

from the meta-analyses into this context, we extrapo-

lated absolute C accumulation calculated using Eqn (4)

to the global scale. This allows comparing results from

CO2 experiments with current understanding of the size

and cause of the modern residual terrestrial C sink

[residual sensu Houghton (2007) because deforestation

is not included in the estimate], estimated to be on the

order of 2 � 1 Pg C yr�1 (Schimel et al., 2001; Fung et al.,

2005; Houghton, 2007). We sought to determine if our

estimates of effects [using Eqn (4)] yielded effects on

soil C that were large relative to this C sink. We there-

fore assumed that the short-term effects that we ob-

served could be used to estimate the long-term response

of soil C since preindustrial periods

S ¼ XAARLð½CO2�m � ½CO2�pÞ=ð½CO2�e � ½CO2�aÞ; ð5Þ

where S is the estimated change in soil C due

to increased CO2, L is global vegetated land area

(excluding areas covered by sparse vegetation, perma-

nent snow and ice, urbanization, and water) of

110 133 106 km2 (Loveland et al., 2000), XAAR is the effect

of elevated CO2 on soil C as calculated by Eqn (4) (but

expressed in Pg C m�2), [CO2]e and [CO2]a are the

elevated and ambient CO2 levels in the experimental

treatments, [CO2]m and [CO2]p are the modern (m) and

preindustrial (p) CO2 concentrations. Thus, the effect

of XAAR observed in going from [CO2]e to [CO2]a is

assumed to apply proportionately to the historical

change in going from [CO2]p to [CO2]m.

This approach assumes that the dynamics of C accu-

mulation caused by elevated CO2 over 1–10 year step-

change experiments can be extrapolated to gradual CO2

rise over centuries, which is problematic for several

reasons (Luo & Reynolds, 1999) and likely overesti-

mates the actual rate of C accumulation in soils caused

by elevated CO2. On the other hand, the approach also

assumes that effects of elevated CO2 are a linear func-

tion of concentration (over the range considered, 280 to

around 750 ppm), which underestimates the actual rate

of C accumulation caused by elevated CO2 to the extent

this is a saturating function of concentration (e.g. Gill

et al., 2002). For purposes here, where our goal was not

to independently estimate the size of the CO2-driven

soil C sink but rather to place results of the meta-

analysis into a broader context, we feel that this

approach is a reasonable starting point.

Weighting

We analyzed the individual data sets and the composite

data set to test the sensitivity of the conclusions of the

meta-analyses to the choice of weighting functions:

weighting observations by the inverse of the pooled

variance (Hedges & Olkin, 1985; Gurevitch & Hedges,

1999); weighting observations by a function of sample

size where

weight ¼ ðNaNeÞ=ðNa þNeÞ; ð6Þ

and Na and Ne are the numbers of replicate observations

for the ambient and elevated CO2 treatments, respec-

tively (Hedges & Olkin, 1985; Adams et al., 1997); or

weighting all observations equally. Weighting functions

were used with all three of the effect size metrics

defined above. In all cases, means and 95% confidence

intervals were estimated using bootstrapping in META-

WIN, a software package designed for meta-analysis

(http://www.metawinsoft.com).

Nitrogen (N)

Three of the four meta-analyses examined the sensitiv-

ity of soil C accumulation to N inputs with elevated

CO2 (Luo, van Groenigen, de Graaff). We tested the
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sensitivity of the N effect to decisions about weighting

and effect size metrics using the composite data set, the

full combination of effect size metrics, and the three

weighting functions described above. We also assessed

the sensitivity of N fertilization effects to different

inferential approaches, because the previous meta-ana-

lyses tested the effect of N on soil C accrual with

elevated CO2 in different ways. van Groenigen assigned

all studies an N class, considering low N studies to have

exogenous N supply of o30 kg ha�1 yr�1, and high N

studies to be above this amount. Luo and de Graaff

included only experiments with high and low N treat-

ments applied in a factorial design. We analyzed the

composite data set using both approaches. In the first

case, we assigned all studies to either ‘low’ or ‘high’ N,

based on the cutoff of 30 kg ha�1 yr�1. For the second,

we included only the subset of experiments where N

treatments were crossed with CO2 in a factorial design

(n 5 15). In this case, we used as our effect size estimate

the difference in responses of soil C to elevated CO2

observed between high and low N treatments.

Differences

Even if all four meta-analyses had used the same metric

and weighting scheme for calculating the effect size of

elevated CO2 on soil C, the values of those average

effect sizes would differ for at least three reasons: (1)

Different ‘Studies’: different studies were included in

the meta-analyses; (2) ‘Extraction’: different estimates of

the effect size were extracted from the same studies, for

example, because different data sources were used for

the same studies or because of errors during figure

scanning. (For expediency, this category also includes

effect size differences resulting from Jastrow’s adjust-

ments for pretreatment soil C differences described

above in ‘Effect sizes,’ although these cases were

omitted to isolate components of ‘extraction,’ as de-

scribed below. Overall, excluding observations adjusted

for pretreatment differences in soil C caused less than a

30% change in the influence of ‘extraction,’ so the

pretreatment adjustment does not appear to dominate.);

and (3) ‘Independence’: data from experiments were

summarized using different criteria involving decisions

about independence. We evaluated the relative influ-

ence of each of these using the three effect size metrics.

We quantified components of the difference between

mean effect size estimates for the different meta-ana-

lyses, decomposing these differences into the three

components described above (‘Studies,’ ‘Extraction,’

and ‘Independence’).

The logic describing the derivation of these three

components follows. Consider two arrays, X and Y,

and here representing arrays of effect size estimates

from two meta-analyses. The difference (D) between the

means of X and Y can be written:

D ¼ SXi=nX � SYi=nY; ð7Þ
where SXi and SYi are the sums of elements in arrays X

and Y and nx and ny are the total numbers of elements in

each array.

X and Y may share elements in common (C), but

they may differ in value (VX and VY) due to extraction

errors. Further, some elements may be unique to each

array. The uniqueness arises for two reasons: (1) one

meta-analysis included data from a study not included

in the other meta-analysis (‘Studies’); and (2) one meta-

analysis used more effect sizes from the same study

because they used less stringent criteria about indepen-

dence (‘Independence’). Thus, there are four ways to

describe the possible elements in the two arrays:

� Common and identical in value (C).

� Common but different in value due to extraction

errors (V).

� Unique because a different study was used (S).

� Unique because more lenient criteria for indepen-

dence was used (I).

Eqn (7) can be expanded by subsetting the total

elements into these four components

D ¼ ðSCþ SVx þ SSx þ SIxÞ=ðnC þ nV þ nX;S

þ nX;I � ðSCþ SVy þ SSy þ SIyÞ=ðnC þ nV

þ nY;S þ nY;I ; ð8Þ

where SC is the sum of identically valued elements

common to both arrays, SVX and SVY are the sums of

common elements that differ in value between X and Y

(e.g. different values were extracted from the same

published figure), SSX and SSY are the sums of elements

unique to each array because they are derived from

different studies, SIX and SIY are the sums of elements

unique to each array because one meta-analysis used

more lenient criteria about independence (i.e. more

effect sizes were included from one study in one of

the meta-analyses), and n gives the number of effect

sizes in each subset.

Rearrangement yields

D ¼ ½ðnC þ nV þ ny;S þ nY;IÞðSCþ SVx þ SSx þ SIxÞ
� ðnC þ nV þ nx;S þ nx;IÞðSCþ SVy þ SSy

þ SIxÞ�=ðnynxÞ;

(9) which simplifies to,

D ¼ ½ðny;S þ ny;IÞSC� ðnx;S þ nx;IÞSCþ nySIx

� nxSIy þ nySSx � nxSSy � nySVx

� nxSVy�=ðnynxÞ: ð10Þ

Elements that are identical in value and shared

between the two arrays (SC) do not cause differences
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between them. Rather, changing the numbers of

elements in each array (nx and ny) affects the relative

influence of common elements on the grand means, and

thus their difference (D). We therefore partitioned and

ascribed this influence into those factors that actually

alter n: including different studies (S) and using more

lenient criteria for independence (I). We then decom-

posed Eqn (10) into three components:

DIndependence ¼ fðnySIx � nxSIyÞ þ SCðny;I

� nx;IÞg=ðnxnyÞ; ð11Þ

DStudies ¼ fðnySSx � nxSSyÞ þ SCðny;S

� nx;SÞg=ðnxnyÞ; ð12Þ

DExtraction ¼ fðnySVx � nxSVyÞ=ðnxnyÞ: ð13Þ

We used these equations to quantify how much each of

these components contributed to the differences among

meta-analyses in mean estimates of the effect size.

Components of extraction

We further explored the differences in effect size

estimates associated with data extraction. In most cases,

meta-analyses used the same data source to estimate

effect sizes from a given experimental system, often

because only one data source was available. In other

cases, though, more than one publication included

estimates of soil C responses to elevated CO2 from

a single experimental system, and different meta-

analyses used different published papers to estimate

effect sizes. We assessed all paired comparisons of

meta-analyses where the same data source was used,

and where different data sources were used, in each

case calculating the absolute value of the difference

in effect size estimates. In all these comparisons, we

excluded cases where independence had been treated

differently and where soil C contents had been adjusted

for pretreatment differences.

Relaxed vs. strict approach to independence

We further explored the influence of independence by

comparing the effect of including multiple observations

vs. deriving a single estimate from each experimental

comparison. We constructed a data set including all

experiments in which approaches to independence

differed among the four meta-analyses (Table 3) to

compare ‘relaxed’ vs. ‘strict’ approaches to statistical

independence. In the relaxed case, we used all effect

size observations from each experiment, derived from

multiple observations over time, over soil depths,

or stratified samples all within a single experimental

comparison (i.e. multiple observations derived from a

single set of elevated and ambient plots). In the strict

case, we included multiple effect size estimates from

multifactor experiments because there are independent

controls for each treatment. However, a single factor

design with many levels would yield only one effect

size estimate, because all treatments are compared with

the same control. We used METAWIN to calculate the

mean effect sizes and the bootstrapped 95% confidence

intervals for the low and high N conditions under the

four weighting schemes described previously.

Criteria for inclusion

The four meta-analyses also differed in criteria for

study inclusion, a common practice in meta-analysis

(Englund et al., 1999). We therefore explored the con-

sequences of excluding studies based on assessments

of quality or relevance. In this case, we compared

responses across the entire data set with responses from

experiments that arguably best represent responses of

the nonagricultural terrestrial surface (i.e. most of it):

field experiments that used open-top chamber or free-

air CO2 enrichment technologies, that were conducted

in undisturbed (untilled) soils, that lasted 2 years or

longer, and that occurred without exogenous N inputs.

The first three of these criteria roughly parallel those

used by Jastrow to construct the data for meta-analysis,

and the fourth was a component of the meta-analyses of

de Graaff, Luo, and van Groenigen. Together, these

criteria capture common perceptions of what constitu-

tes global change field experiments that are most rele-

vant to understanding future responses of the Earth’s

nonagricultural terrestrial ecosystems.

Results

Metrics and weights

For each metric, there was a range in the estimates of the

mean effect size across the 12 combinations of three

weighting schemes and four meta-analyses under low

N conditions (Fig. 1, Table 2). For example, the percent

change in soil C per year estimates ranged from �0.03%

to 1.36% yr�1 (Table 2), and estimates of the CO2 effect on

soil C accumulation ranged from �6.5 to 26.9 g m�2 yr�1

(Fig. 1). These differences are biogeochemically impor-

tant. Expressing accumulation as a global flux driven

by the observed increase in atmospheric CO2 [using

Eqn (5)], they correspond to C sinks of �0.3 to

1.1 Pg C yr�1 (Table 2), from a small source to around

half of the current residual sink (Houghton, 2007).
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Within each of the data sets from the four separate

studies, the use of different weighting functions had

some influence on the mean estimates of the effect size

(Fig. 1, Table 2), although the influence of the weighting

function within one meta-analysis was smaller than the

differences among meta-analyses. Within one meta-

analysis, weighting by sample size or with no weight

gave comparable estimates that were often larger

than weighting by the inverse of the variance (Fig. 1,

Table 2). Despite the differences in the mean effect size

estimates across data sets and weighting functions, the

95% confidence intervals of all 12 estimates overlapped

(Table 2, and grey band in Fig. 1). Therefore, although

the differences among means were large and biogeo-

chemically meaningful, confidence in these differences

was limited.

Even though the 95% confidence intervals all over-

lapped with each other, they did not all overlap zero,

arguably leading to different inferences about the pre-

sence or absence of an effect of elevated CO2 at low N

when based on null hypothesis tests (see Osenberg et al.,

2002). Specifically, the 95% confidence intervals over-

lapped with zero for all cases in the van Groenigen and

de Graaff data sets, but never did in the Jastrow data

set; the Luo data set was intermediate (two of three

confidence intervals overlapped zero). In all cases,

when confidence intervals did not overlap zero, they

indicated a positive effect of elevated CO2 on soil C

accumulation under low N conditions. Thus, the differ-

ent inferences drawn from these four meta-analyses

cannot be explained entirely by differences in effect size

definitions or weights.

Studies included, data extraction, and independence

The four meta-analyses had only modest overlap

among the CO2 experiments they included in their

Table 2 Comparison of databases from four published meta-analyses for the effect of elevated carbon dioxide (CO2) on soil carbon

(C) under low nitrogen conditions, and the influence of the effect size metric and weighting function

Database Weighting

XLR XRAR S

Mean 95% CI Mean (%) 95% CI Mean 95% CI

de Graaff 1/Var �0.004 �0.045 to 0.033 �0.03 �1.99 to 1.88 �0.28 �1.12 to 0.44

N �0.009 �0.049 to 0.030 0.26 �1.58 to 2.10 0.31 �0.67 to 1.43

– �0.003 �0.049 to 0.037 0.26 �1.59 to 2.14 0.31 �0.62 to 1.45

Jastrow 1/Var 0.042 0.014 to 0.066 0.82 0.20 to 1.41 0.95 0.05 to 1.86

N 0.030 0.007 to 0.057 0.91 �0.23 to 2.15 1.13 0.15 to 2.30

– 0.055 �0.003 to 0.075 0.92 �0.23 to 2.20 1.13 0.16 to 2.16

Luo 1/Var 0.047 0.013 to 0.080 1.35 0.54 to 2.22 1.01 0.33 to 2.05

N 0.061 0.026 to 0.101 1.36 0.50 to 2.16 1.15 �0.64 to 2.70

– 0.059 0.016 to 0.083 1.35 0.51 to 2.09 1.15 �0.67 to 2.67

van Groenigen 1/Var 0.015 �0.011 to 0.039 0.01 �1.53 to 1.50 0.07 �0.73 to 0.67

N �0.007 �0.042 to 0.022 0.13 �1.33 to 1.60 0.10 �0.68 to 1.08

– �0.004 �0.035 to 0.026 0.15 �1.40 to 1.65 0.10 �0.76 to 1.01

Weighting functions assessed include weighting by the inverse of the pooled variance (1/Var), weighting by the number of

experimental replicates (Adams et al., 1997), and no weighting (�). The effect size metrics include XLR, the log of the response ratio,

XRAR or the relative accumulation rate expressed as the percent change in soil C per year of experimental CO2 exposure, and S,

which is the extrapolation of the observed CO2 effect on soil C accumulation to the global scale, here expressed in units of Pg C yr�1

[using Eqn (5)]. (XAAR is shown in Fig. 1). The values in parentheses are the bootstrapped lower and upper 95% confidence intervals.
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Fig. 1 The influence of different weighting schemes on the

estimate of the effect of elevated CO2 on soil C accumulation

(g C m�2 yr�1) at low N supply according to the four meta-

analyses, identified by the lead author’s surname. Filled circles

are means and vertical bars 95% confidence intervals

(*confidence intervals that do not overlap zero). Weighting

functions are the inverse of the variance in the effect size

estimate (1/Var), a function of sample size (N, Adams et al.,

1997), and no weight (�). Gray shaded area indicates region of

overlap for all 12 confidence intervals. Dashed horizontal line

indicates an effect of zero.
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meta-analyses (Fig. 2a). The lack of overlap among

studies partly reflects differences among the four

meta-analyses in the criteria they used for study selec-

tion. For example, whether to include studies con-

ducted in greenhouses and growth chambers (e.g. van

Groenigen, Luo), or only ‘field’ studies (de Graaff,

Jastrow), and whether to exclude studies lasting less

than one (van Groenigen) or two growing seasons

(Jastrow). Our survey of the lead authors showed that

failure to meet stated criteria explained most omissions,

and a handful of studies were omitted because they

were published too late to be included in a given meta-

analysis. Yet, a surprising number of cases were omitted

because the search algorithms used to gather appropri-

ate literature were not exhaustive (Fig. 2a).

The four meta-analyses also differed in data extrac-

tion. Data compiled by the four meta-analyses usually

did not yield the same estimates of the effect size of

elevated CO2 on soil C for the same study, even after

removing cases where independence was treated

differently and cases where values of soil C had been

adjusted for pretreatment differences (Jastrow et al.,

2005), and after converting all data to the same effect

size metric (Fig. 2b). Of 114 paired comparisons of effect

size estimates for the same studies among the four

meta-analyses, in only 44 cases did two meta-analyses

come up with identical estimates. When meta-analyses

used the same data source (99 cases), the average

difference in effect size estimates was smaller (0.43 �
0.10% yr�1, mean � standard error) than when meta-

analyses used different data sources (15 cases, mean

difference 1.55 � 0.30% yr�1). Thus, using data from

separate samplings of a given experiment [e.g. Williams

et al. (2000) vs. Jastrow et al. (2005) for the tallgrass

prairie study; or Johnson et al. (2004) vs. Jastrow et al.

(2005) for the Sweetgum forest study] caused larger

differences in effect size estimates than did relying

on the same data source. Nevertheless, whether using

the same data source or different data sources, the

mean differences in effect size estimates (0.43% and

1.55% yr�1) were rather large, comparable with

some estimates of the mean effect size itself (see XRAR

in Table 2).

The four meta-analyses also differed in what

were considered independent estimates of effect size

(Table 3). The meta-analyses consistently included

multiple estimates from multifactor experiments (34

cases), and single estimates from single-factor experi-

ments (i.e. manipulating CO2 only, 12 cases). However,

in a number of cases, the meta-analyses took different

approaches toward what constitutes statistically inde-

pendent observations (Table 3).

The observed differences in effect sizes under low N

conditions were influenced by each of the three factors

we investigated, but of the three, the decision about

what constituted an independent sample had the lar-

gest influence (Table 4). Calculated as a component of

the overall magnitude of the difference in effect sizes

between paired meta-analyses, approaches to indepen-

dence caused 45–70% of the difference between effect

size estimates, whereas the inclusion of different studies

caused 5–24%, and data extraction contributed 19–31%.

Calculated on a per case basis, in all but one case (van

Groenigen–de Graaff, for ‘accumulation’), indepen-

dence had the largest influence for all metrics consid-

ered (Table 4). This indicates that decisions about what
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Fig. 2 (a) Overlap (and lack thereof) in the 81 observations

included in at least one of the four meta-analyses. For each of the

four meta-analyses (identified by last name of first author on the

left), black shading indicates cases that were included, gray

indicates cases that were omitted. White hatch marks on the

bottom indicate the scale (one mark, one case). The text within

the box indicates the total number of cases included by the four

meta-analyses (202) and the total number of cases that were

omitted (122). The table underneath shows how many studies

were excluded because they did not meet the authors’ criteria,

omitted because the data had not yet been published, or omitted

because of oversight. (b) Frequency distribution of the absolute

value of the difference in effect size estimates between individual

meta-analyses for the metric, percent change per year. For a

given experiment, we calculated the difference in effect size

estimates between each pair of meta-analyses that assessed that

experiment. Observations were excluded in cases where inde-

pendence was treated differently or where pretreatment adjust-

ments of soil C content had occurred, for a total of 114 unique

pairs. To isolate further the components of ‘extraction’ errors, the

figure shows cases where identical data sources were used to

estimate effect sizes (filled bars), and cases where different data

sources were used (open bars).
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constitute independent samples in meta-analyses can

strongly influence the meta-analyses’ results.

Combined data set

Using the combined data set, which represents the

‘average’ across all four meta-analyses under all N

conditions, we found that elevated CO2 significantly

increased soil C, regardless of metric or weighting

function (Table 5). Thus, when averaged across all

studies and N conditions, these meta-analyses support

a similar conclusion about the overall effect of elevated

CO2. We also found that added N caused a larger

increase in soil C accumulation with elevated CO2,

regardless of approach, metric or weighting scheme

(Table 5). Including only experiments in which N and

CO2 were manipulated in a factorial design, the differ-

ence between CO2 effects at high and low N was

positive, indicating that CO2 had larger effects at high

N. The 95% confidence intervals did not always exclude

zero, reflecting the lower sample size for the factorial

design, but the N effects were comparable in magnitude

and direction to those estimated from including all

observations (Table 5).

In all cases, the effect of elevated CO2 at low N supply

was not significantly different from zero, though the

confidence intervals included biogeochemically signifi-

cant rates of soil C accumulation. For example,

the confidence intervals for the effect of elevated CO2

on soil C accumulation at low N ranged from �10

to 1 39 g m�2 yr�1, with the upper estimate potentially

explaining a 1.6 Pg C yr�1 residual terrestrial sink

[calculated using Eqn (5)]. Thus, while meta-analysis

can show the influence of added N on the CO2 effect,

the data currently available provide limited power to

address the significance of the effect of elevated CO2 on

soil C in the absence of N addition.

Including multiple observations from single experi-

ments (‘relaxed’ independence) caused higher estimates

of the effect of elevated CO2 on soil C under low N

conditions, and lower estimates under high N condi-

tions, compared with the stricter approach of including

only a single observation from each experimental com-

parison (‘strict’ independence, Fig. 3). This pattern held

for all three weighting functions considered. Including

multiple estimates also narrowed the confidence inter-

vals, under low N conditions, resulting in confidence

intervals that did not overlap with zero (Fig. 3).

Restricting the data set to only those field studies that

used open-top chambers or free-air CO2 enrichment,

that occurred in undisturbed soils, and that lasted at

least 2 years did not alter the effect of elevated CO2 on

soil C (Table 5). Estimates of mean soil C accumulation

rates from these more ‘realistic’ experiments were simi-

lar to those from the full combined data set under low N

conditions, which included short duration and growth

chamber experiments; in both cases, confidence inter-

vals all overlapped zero, indicating no statistically

significant effect of elevated CO2. As with the full

combined data set under low N conditions, confidence

Table 3 Number of additional observations included from experiments in which independence was treated differently by the four

different meta-analyses across the entire dataset, showing the specific experiment from which multiple observations were drawn,

the ‘source’ of those multiple observations, and the additional number of observations (‘ 1 df’, or the increase in degrees of freedom)

that resulted from including multiple observations from a single experiment in those meta-analyses that used more relaxed criteria

for independence. The footnotes show which meta-analyses used the more lenient criteria in particular cases.

Experiment Source 1 df References

Desert FACE Stratified sampling by cover type* 2 Billings et al. (2002)

Loblolly pine FACE Stratified sampling by depthw, multiple soil

fractionsw, and multiple samples in timew
7 Lichter et al. (2005), Schlesinger

& Lichter (2001)

Chaparral Multiple CO2 treatmentsz 2 Treseder et al. (2003)

Ponderosa Pine Multiple CO2 treatmentsz and multiple

samples in timew
8 Johnson et al. (1997, 2000)

PopFACE Nested plots*,§ 2 Hoosbeek et al. (2004)

Swiss FACE Multiple samples in timew 4 van Kessel et al. (2006), Six et al. (2001),

de Graaff et al. (2004), van Groenigen

et al. (2002), van Kessel et al. (2000)

Crops Multiple soil fractionsw 2 Prior et al. (2004), Torbert et al. (2000)

*de Graaff.

wLuo.

zJastrow.

§van Groenigen.
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intervals from the ‘realistic’ experiments encompassed

a range that included biogeochemically meaningful

effect sizes; e.g. the upper 95% confidence limit for the

estimate of accumulation weighted by sample size was

56.9 g C m�2 yr�1, corresponding to a residual sink of

2.5 Pg C yr�1. Thus, selecting experiments representing

arguably more realistic conditions had little influence

on the outcome of the meta-analysis.

Discussion

The range in mean estimates and confidence intervals

resulting solely from using different weights (Fig. 1,

Table 2) illustrates the potential for the selection of a

weighting function alone to affect inferences drawn

from meta-analysis, inferences about both the magni-

tude of the effect size and its significance. Weighting

observations is standard procedure in meta-analysis

(Gurevitch & Hedges, 1999), but assessing the influence

of different weighting functions is not, perhaps because

the use of default weighting functions (like the inverse

of the pooled variance) is perceived to be a prescribed

part of sound meta-analytic procedure (Hedges & Olk-

in, 1985). For one data set (Luo), selection of a different

weighting function yielded a statistically significant

result in one case and nonsignificant results in two

other cases. Our findings therefore underscore the im-

portance of justifying the selection of any chosen

weighting function and assessing the influence of alter-

native selections on the outcome of the meta-analysis.

Including different studies, extracting data, estimat-

ing different effect sizes, and approaching indepen-

Table 4 The relative influence of independence, studies included, and data extraction on the differences between mean effect size

estimates among the four meta-analyses under low N conditions for each of the three metrics of effect size considered, XLR (� 100

for easier comprehension), XRAR, and XAAR

Metric

Luo�de

Graaff

Luo�
Jastrow

Luo�van

Groenigen

Jastrow�de

Graaff

Jastrow�van

Groenigen

van Groenigen�
de Graaff

Log response ratio (XLR)� 100

Overall magnitude

Independence 3.8 3.3 3.9 1.4 2.0 �0.7

Studies 1.9 �1.2 1.6 1.5 0.2 0.9

Extraction 0.7 0.3 0.8 1.2 1.6 0.0

Per case influence

Independence 0.27 0.22 0.28 0.20 0.18 0.18

Studies 0.07 0.08 0.04 0.07 0.01 0.07

Extraction 0.06 0.04 0.05 0.06 0.07 0.00

Relative accumulation rate (XRAR)

Overall magnitude

Independence (%) 0.79 0.68 0.79 0.40 0.66 �0.25

Studies (%) 0.22 �0.33 0.19 0.14 �0.21 0.23

Extraction (%) 0.19 0.09 0.22 0.22 0.33 0.01

Per case influence

Independence (%) 0.06 0.05 0.06 0.06 0.06 0.06

Studies (%) 0.01 0.02 0.01 0.01 0.01 0.02

Extraction (%) 0.02 0.01 0.02 0.01 0.01 0.00

Absolute accumulation rate (XAAR) (g m�2 yr�1)

Overall magnitude

Independence 8.6 4.3 8.7 5.4 11.8 �0.2

Studies 9.9 �1.2 9.7 5.5 �0.9 �2.3

Extraction 2.6 �1.5 6.0 8.4 11.8 �0.7

Per case influence

Independence 0.6 0.3 0.6 0.8 1.1 0.1

Studies 0.3 0.1 0.3 0.2 0.0 0.2

Extraction 0.2 0.3 0.4 0.4 0.5 0.1

For each metric, we calculated the overall magnitude of the influence of independence, studies included, and data extraction

[Eqns (11–13)]; the sum of these three values is the difference between the two means. We also calculated the per case

influence, which is the absolute value of the overall magnitude, divided by the frequency of cases (i.e. observations) where

independence was treated differently, different studies were included, or data extraction resulted in different effect size estimates,

for each comparison.
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dence differently all affected the outcome of the meta-

analysis, but independence had the largest influence

(Table 4). Independence may have had a larger effect

than the other factors considered because repeated

measurements of a similar effect size will tend to put

greater emphasis on that particular study (and its effect)

Criteria for what constitutes an independent sample

suitable for inclusion in meta-analysis are neither clear

nor uniformly applied. Including multiple effect size

estimates from all control vs. treatment comparisons in

a multifactor experiment is often considered a reason-

able balance (e.g. Gurevitch et al., 1992; Curtis & Wang,

1998; Bancroft et al., 2007; Morris et al., 2007), even

though those comparisons are arguably not indepen-

dent because they occur within the same experimental

setting. Some meta-analyses include multiple observa-

tions from the same experimental comparison – for

example, including multiple observations over time

from studies of leaf decomposition rates (Knorr et al.,

2005), or multiple observations from different soil

depths in elevated CO2 experiments (Luo et al., 2006).

The argument for this approach is that excluding or

even averaging across multiple observations within a

given study has too high a cost in lost information.

One argument for stricter approaches to independence

is that it reduces the chance of making flawed

inferences (Hedges & Olkin, 1985). Another important

argument is that not all times (or levels) may be relevant

to the question being addressed, so data should be

restricted to the timescale most relevant to the question

and effect size metric (Osenberg et al., 1997, 1999;

Downing et al., 1999).

Our comparison shows that the approach to indepen-

dence can influence the outcome of the meta-analysis:

using the ‘strict’ approach provides weak evidence of a

significant CO2 effect on soil C accrual at low N,

whereas the ‘relaxed’ approach usually indicates that

the effect is significant (Fig. 3). One possibility is to

avoid including multiple nonindependent observations

and include the information in some other way, for

example assigning higher weights to means of multiple

observations, or by restricting analysis to the most

appropriate data for the question (Downing et al.,

1999). Minimally, we suggest that if practitioners choose

to include multiple nonindependent observations, they

should assess the impact of this decision on the out-

come of the meta-analysis, and interpret the findings

with caution if one approach indicates a ‘significant’

effect but the other does not.

Although it is not surprising that including or

excluding particular studies influenced the mean effect

size estimate (Table 4), it was surprising how little the

meta-analyses overlapped in the studies they included.

There were three reasons for the lack of overlap. First, the

time periods over which data were gathered were not

identical, so some meta-analyses had access to more recent

data than others. Second, the ability to find appropriate

studies was also important: clearly, the search methods

Table 5 Summary of meta-analysis results for the combined dataset, for three different metrics and three different weighting

schemes (defined in ‘Methods’)

Metric Weighting

The whole dataset Low N High N N effect

Factorial

experiments only

Field experiments,

at least 2 years, low N

Effect

size 95% CI

Effect

size 95% CI

Effect

size 95% CI P-value

High N–

Low N 95% CI

Effect

size 95% CI

XLR

(� 100)

1/Var 4.3 1.8 to 6.6 1.7 �1.2 to 4.7 7.6 3.6 to 11.3 0.022 7.4 0.6 to 1.3 2.2 �3.6 to 6.4

N 3.1 0.7 to 5.3 1.0 �2.1 to 4.3 6.2 3.1 to 9.5 0.046 3.7 �0.9 to 8.5 1.6 �2.4 to 5.6

– 3.4 1.4 to 5.7 0.4 �02.7 to 3.1 7.2 3.9 to 10.7 0.002 4.8 �0.3 to 9.5 0.4 �3.4 to 3.7

XRAR 1/Var 1.30% 0.36 to 2.23 0.23% �1.19 to 1.40 2.55% 1.23 to 4.08 0.010 1.9% 0.3 to 4.2 0.2% �0.9 to 1.3

N 1.45% 0.32 to 2.52 0.34% �0.97 to 1.66 2.83% 1.43 to 4.41 0.016 1.7% �0.2 to 4.0 0.6% �0.5 to 1.6

– 1.48% 0.42 to 2.53 0.35% �0.96 to 1.79 2.87% 1.41 to 4.56 0.029 2.2% �0.2 to 4.6 0.2% �0.9 to 1.2

XAAR 1/Var 18.8 5.7 to 33.6 13.0 �8.2 to 39.4 25.1 12.0 to 40.4 0.420 28.5 �4.7 to 57.2 3.1 �10.8 to 56.1

N 26.7 8.0 to 49.8 9.2 �10.0 to 30.3 48.4 17.8 to 90.0 0.054 60.9 4.2 to 154.0 23.9 �3.9 to 56.9

– 26.7 8.2 to 49.2 9.2 �10.4 to 32.8 48.4 18.7 to 91.9 0.058 68.4 8.3 to 161.8 12.4 �9.5 to 36.4

Shown are the grand mean effect sizes across all N treatments for the whole data set, with the corresponding 95% confidence

interval. ‘Low N’ and ‘High N’ show the mean effect sizes for the different N categories, with corresponding 95% confidence

intervals. ‘P-value, N effect’ is the probability that the low and high N categories are equal. ‘Factorial experiments only’ shows the

mean difference and 95% confidence interval in response to CO2 caused by N addition (high–low N) based on experiments where

CO2 and N were crossed in a factorial design (n 5 15 experiments). The last two columns show mean effect sizes and 95% confidence

intervals for an analysis excluding studies that lasted o2 years, were conducted in disturbed soils, greenhouses or glasshouses, or

with exogenous N additions 430 kg N m�2 yr�1 (n 5 25 observations).
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used were not always exhaustive, such that studies that

had been published and would have met the relevant

criteria were simply missed. Good practice may thus

require using multiple search tools, and requesting that

reviewers of manuscripts reporting meta-analysis evalu-

ate the completeness of the search. More broadly, this

points to the need to overcome a long-standing problem in

data synthesis in ecology: poor adoption and availability

of public data archival systems (Parr & Cummings, 2005).

Third, the meta-analyses used different criteria for what

constituted an acceptable study. Evaluating study quality

is common in meta-analysis and is entirely reasonable. In

the present case, long-term experiments conducted in the

field with intact soils are probably more appropriate for

assessing the likely future role of terrestrial soils for

sequestering C than are short-term experiments in green-

houses using disturbed soils mixed with sand. But even

with such defensible criteria for study exclusion, an alter-

native approach is to include all the data and test empiri-

cally whether selection criteria influence the outcome. If

so, the criteria for exclusion may be justified. If not (as in

the present case), the test with the broader data set will be

more powerful (Englund et al., 1999).

Our finding that the response of soil C depended on

exogenous N supply is not surprising given that the

three meta-analyses which separately assessed the

effect of N also found this (de Graaff et al., 2006; Luo

et al., 2006, van Groenigen et al., 2006). The consistency

of the response across effect size metrics, weighting

functions, and inference tests (i.e. whether across the

whole data set or restricted to factorial experiments)

further suggests this result is robust. What drives this N

response? Past syntheses show that N addition usually

increases soil C accumulation, a conclusion supported

by meta-analyses in forest ecosystems (Johnson &

Curtis, 2001), experiments in grasslands (Dijkstra et al.,

2005; Billings et al., 2006, but see Xie et al., 2005),

and meta-analyses in crops (Alvarez, 2005). For crops,

increased soil C required returning crop residues to the

soil (Alvarez, 2005), consistent with the notion that the

positive effects of N addition on soil C accumulation

are an indirect response to increased plant growth with

N addition. The direct effects of N addition on organic

matter decomposition can be positive, neutral, or nega-

tive (Neff et al., 2002), and in some cases the negative

effects dominate the response at the ecosystem level,

even when added N increases plant production

(e.g. Mack et al., 2004). Thus, the enhanced response

of soil C to elevated CO2 with added N could reflect

both the synergistic effect of N and CO2 on plant

production and interactions between N and CO2 on

decomposition of soil organic matter (Reich et al., 2006).

Meta-analysis in ecology has been lauded as a power-

ful synthetic tool (Gurevitch & Hedges, 1999; Osenberg

et al., 1999), and use of meta-analysis has increased

dramatically in the past decade (Fig. 4). With meta-

analysis, idiosyncratic results from a handful of studies

can be appropriately categorized as odd, nongeneraliz-

able, and unimportant for explaining broad-scale pat-

terns. On the other hand, a collection of nonsignificant

results, when considered together, can reveal general

patterns otherwise inscrutable against the backdrop of

natural variation, as is often the case in individual

studies examining soil C (Conen et al., 2003). As with

any statistical technique, meta-analysis is sensitive to

subjective decisions made during its application. We

also acknowledge that interpretations of meta-analyses,

like any data interpretation, have an element of sub-
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Fig. 3 The effect of different approaches to independence on

mean effect size (measured as percent per year) and 95% con-

fidence intervals for the effect of elevated CO2 on soil C. Data were

compiled from all cases where the four meta-analyses used differ-

ent approaches to independence (n 5 20 for ‘strict’, 55 for ‘relaxed’).

Weighting functions are indicated below the horizontal axis: – (no

weight), 1/Var (inverse of the variance), and N [Eqn (6)]. For

definitions of ‘strict’ and ‘relaxed’ independence, see ‘Methods’.
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jectivity, and the choice of authors to emphasize one

point over another can influence how those papers are

perceived.

Results from meta-analyses can change with different

criteria for data selection (Englund et al., 1999), with the

metric of the effect size selected (Osenberg et al., 1997,

1999), and as shown here, with data extraction, weight-

ing functions, study selection, and approaches to statis-

tical independence. We encourage researchers applying

meta-analysis to assess and report the sensitivity of

their findings to such decisions, and to clarify their

procedures. Specifically, we recommend that meta-ana-

lysts: (1) state specifically over what time period studies

were gathered, particularly the point at which admis-

sion of new studies ceased; (2) describe search algo-

rithms, including search terms; (3) take an exhaustive

approach to data gathering and test empirically

whether assessments of study ‘quality’ influence the

outcome; (4) use metrics of effect size that reflect the

specific question of interest; and (5) conduct multiple

meta-analyses with the same data set, examining

whether weighting functions, effect size metrics, and

decisions about independence influence the outcome.

Results that are highly sensitive to subjective decisions

should be viewed with caution.
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