

Lab4.doc

Python Lab 4 Activities
DandI and MON Fall, 2009

http://grace.evergreen.edu/mon/asn-python.html
 SHAPE

Be sure to hit refresh on your browser to get the latest version.

 SHAPE

These lab activities assume you have already completed the chapter reading and the assigned pre-lab exercises, on paper to discuss, annotate, and then to hand in. If you do not prepare for the lab, you will likely not be able to complete the lab work on time.

At the beginning of the lab we will gather (DandI students in the Solarium and MON students in the Grotto) for a discussion of the pre-lab exercises and the chapter material. After the discussion, proceed with the following lab activities.

By the end of lab, 3:30 or preferably earlier, you should copy/paste the programs assigned for lab that you have completed to the appropriate lab folder in your Cubbie. Even if you completed these programs with a partner, you should both copy/paste into your respective Cubbie. If you don’t have time to finish the programs, copy/paste the rest of the lab programs into the lab folder by Saturday 7am.
Learning Objectives for this Lab:

1. Concepts:

a. Recall from last week: functions and libraries

b. Sequences are more general than the built-in data types (int, float, str), and include strings and lists. Lists can be manipulated using operations such as concatenation +, repetition *, indexing/slicing <string>[<start>:<end>], len(),iteration (for <var> in <sequence>. Some of these, e.g., len() are built-in functions.
c. How strings are stored in memory.

d. What a file is, to a program.
2. Skills:

a. How Python string assignment works, and is subtly different than for integers.

b. How to use sequences for text and list processing.
c. Python strings are not mutable; python lists are.

d. How to read and write files in Python.

e. (optional) formatting output: pretty printing!

3. Abilities:

a. Sequence (string and list) manipulation in Python.

b. Using lists as lookup tables.

c. Reading and writing files – a line at a time.

Lab Activities:

1. If it is not already there, create a lab4 folder in your own directory (Students) where you will keep your lab4 work. If you are working with another person, create a lab4 folder in Workspace for both of you. Make sure there is a lab4 folder in each of your Cubbies.
2. Practice Basic String Operations. Type in the string exercises on p. 80-81. Remember: these experiments are part of a conversation with the Python Shell (interpreter), not the IDLE editor. Make sure you understand concatenation, repetition, indexing, slicing, and length.

3. More practice iterating through characters.
>>> myString = "A sheet I slit, I slit a sheet, and on the slitted sheet I sit"
>>> acc=0

>>> for ch in myString:

print ch,

acc = acc + 1

>>> print "The string: '"+myString+"' has ", acc, " characters."
>>> len(myString)
>>> for i in range(len(myString)):

 print myString[i],
>>> print "The string: '"+myString+"' has ", len(myString), " characters."
Now, you understand about iterating through strings!

4. As you learned in the last lab, every literal and every expression has a type in Python. Try using the python command "type" on some the following expressions and make sure you understand and believe the result:

>>> type(myString)
>>> type(len(myString)
>>> myList = [1, 2, 3, 4, 5]

>>> type(myList)

>>> type(len(myList))

>>> type(myList[1])
>>> type(float(myList[1]+myList[4]))

>>> type(float(myList[1]+myList[5]))

>>> type(myString[1])

>>> acc=0
>>> for i in myList:

 acc = acc + 1
>>> acc

>>> mystring = 'abcdefghijklmnopqrstuvwxyz'

>>> mystring

>>> mystring[1:26]

>>> mystring[1]

>>> mystring[-1]

>>> mystring[0:-1]

>>> mystring[0:len(mystring)]
5. The following is meant to drive home the fact that strings and lists have a lot in common, but that lists are more general than strings. In particular, lists are mutable. Strings are NOT mutable.

>>> listOfMonths = ["Jan", "Fev", "Mar", "Apr", "May", "Jun"]

>>> stringOfMonths = "Jan Fev Mar Apr May Jun"

>>> listOfMonths[4]

>>> stringOfMonths[4]

>>> stringOfMonths[4:7]

>>> listOfMonths[1] = 'Feb'

>>> listOfMonths

>>> stringOfMonths[4:7] = 'Feb'

Why is listOfMonths[1] = 'Feb' OK but

 stringOfMonths[4:7] = 'Feb' NOT OK?

6. Your first text processing programming! Type in the program on pp 82-83 that generates computer usernames. Test it to make sure it works as promised, and make sure you understand it. Call this program username.py.
7. To do the following exercise, you will need to understand how to use a list as a lookup table. Here is an exercise that will teach you about that, but be aware that the lookup table you use below will be quite different! First, do the following:

>>> DaysOfWeek = "SunMonTueWedThuFriSat"

>>> pos = 0

>>> DaysOfWeek[pos:pos+3]

>>> pos = 1

>>> DaysOfWeek[pos:pos+3]

>>> pos = 3

>>> DaysOfWeek[pos:pos+3]

 >>> for pos in range(0,7,3):

 DaysOfWeek[pos:pos+3]

 >>> for pos in range(0,21,3):

 DaysOfWeek[pos:pos+3]

 >>> for DayN in range(0, len(DaysOfWeek), 3):

 DaysOfWeek[DayN:DayN+3]

 DaysOfWeek is a “Lookup Table”.

Now, type the program on p. 84 into the IDLE editor, and run it. Make sure you understand how Lookup Tables work before going further!

8. Save your program username.py as TESCuserName1.py. Modify TESCuserName1.py to:
a. ask the user for the day of the month in which he or she was born
b. Generate an Evergreen style username, i.e., first three characters of last name, followed by first three characters of first name, followed day of the month when user was born.

c. Print the user name

Test your program!

9. Type in the program userfile.py on p. 111-112. Use it to read the file, and output it line by line. You can use the file “test” to test this program. Remember that you will want the input file to be in the same directory as your program!
10. Save userfile.py as TESCuserName2.py, and then modify it to read in the usernames and day of birth from TESCstudents. Test your program, and save your output file to TESCuserNames.
11. Be sure you understand how other important parts of the Python string library work!

>>> string.split("Now","i")

>>> string.split("Mississippi", "i")

>>> for w in string.split("Now is the winter of "):

 print w

>>> msg=""

>>> for s in string.split("Mississippi", "i"):

 msg = msg + s

>>> ord("s")

>>> ord("s") + 1

>>> ch(ord("s"))

>>> chr(ord("s")+1)

>>> for ch in "secret":

 chr(ord(ch)+1)
12. The following is meant to drive home the fact that strings and lists have a lot in common, but that lists are more general than strings. In particular, lists are mutable. Strings are NOT mutable.
>>> listOfMonths = ["Jan", "Fev", "Mar", "Apr", "May", "Jun"]

>>> stringOfMonths = "Jan Fev Mar Apr May Jun"

>>> listOfMonths[4]

>>> stringOfMonths[4]
>>> stringOfMonths[4:7]

>>> listOfMonths[1] = 'Feb'

>>> listOfMonths

>>> stringOfMonths[4:7] = 'Feb'

Why is listOfMonths[1] = 'Feb' OK but

 stringOfMonths[4:7] = 'Feb' NOT OK?

13. Extra Credit: Use your new string processing skills to write a function (or program) that will translate a given string to Pig Latin. Recall that Pig Latin is a kind of converter: To convert English (or any language) to Pig Latin, remove the first letter of each word in the string, and append a hyphen plus that first letter and “ay” to the end of that word. Thus “Neal” becomes “eal-Nay”, and “Judy” -> “udy-Jay”. Call your program pigLatin.py

Note: Those of us who speak Pig Latin well know that when the first letter of a word is a vowel, one merely appends “-ay” to the word; so “is” becomes “is-ay”. You don’t yet know enough Python to do this easily. But if you can do it with what you know so far (I don’t know that you can!), you’ll get super extra credit!

14. Extra Credit: String formatting (Section 4.5.2) could improve your futval.py program from hw2. Do this, and call the new program futvalpp.py (“pp” stands for “pretty printing”).

15. Extra Credit: Section 4.5.3 suggests a way to code a better change counter, by making sure that the program uses exact values to represent money. Study the example on p 105 and make sure you understand it. Were you told that your futval program produced incorrect results? Feel free to fix it if it was not working before!

Could a similar strategy as suggested for the change counter be used to improve your futval.py program? If not, say why not, and resubmit your (working) futval.py (hw2); with a comment that says why using exact integer values to represent money will not help. If so, say why and revise your futval.py program to use this strategy, and create a test case that will give two different values, depending on whether you used your old or new futval.py program. Put that test case in the comments of the new futval.py program. Call the new program futvalExact.py.
16. After you complete and understand the activities above and understand this chapter’s programs in the text, but before the end of lab, copy/paste the programs you completed during lab into your Cubbies\xxxyyynn\python\lab4.

a. TESCuserName1.py

b. TESCuserName2.py

c. futvalpp.py (extra credit)

d. fuval.py (extra credit – but this is your chance to submit a working futval!)

e. futvalExact.py (extra credit)

f. pigLatin.py (extra credit)
You do not need to turn in a transcript of your conversation with the Python interpreter; just the printout of your program(s). That said, you should be prepared to answer questions about the thought experiments above, even though no programs are associated with them.
17. Proceed to the assigned homework programming exercises at the end of the chapter. If you have done all of the activities above, you'll find that you've already completed part of some of the programming exercises.
© J. Cushing, N. Nelson 2009
p 1 of 5
Rev. 10/19/2009
G

