Lab6.doc

Python Lab 6 Activities
DandI and MON Fall, 2009

http://grace.evergreen.edu/mon/asn-python.html

[image: image1]
Be sure to hit refresh on your browser to get the latest version.

[image: image2]
These lab activities assume you have already completed the chapter reading and the assigned pre-lab exercises, on paper to discuss, annotate, and then to hand in. If you do not prepare for the lab, you will likely not be able to complete the lab work on time.

At the beginning of the lab we will gather (DandI students in the Solarium and MON students in the Grotto) for a discussion of the pre-lab exercises and the chapter material. After the discussion, proceed with the following lab activities.

By the end of lab, 3:30 or preferably earlier, you should copy/paste the programs assigned for lab that you have completed to the appropriate lab folder in your Cubbie. Even if you completed these programs with a partner, you should both copy/paste into your respective Cubbies. If you don’t have time to finish the programs, copy/paste the rest of the lab programs into the lab folder by Saturday 7am.

DandI will have a second “Talking Circle” to brainstorm project ideas from 3-3:30, so we will stop at 3pm.

Learning Objectives for this Lab:

1. Concepts: Functions

a. The power of and a talent for Abstraction.

b. That functions eliminate code duplication, and improve readability and maintainability.

c. Parameter passing into functions: formal and actual parameters, call by value, call by reference.

d. Variable scope: local.

2. Skills:

a. How Python passes parameters and returns value(s).

b. Mutable objects in Python, and how Python functions treats them when they are used as parameters

3. Abilities: Writing Functions

a. Recognizing patterns (“pattern matching”), in programs and translating those patterns into a function design.

Lab Activities:

1. If it is not already there, create a lab6 folder in your own directory (Students) where you will keep your work for this lab. If you are working with another person, create a Lab6 folder in Workspace for both of you. Make sure there is a Lab6 folder in both of your Cubbies.

2. Warm up: As a group exercise, we are going to do programming exercise 1 together. Please work on this NOW. Get a hard copy of OldMcDonald from your lab instructor. (or type the song into a file (OldMcDonald.txt) in your workspace, and print it. Circle everywhere in the song that “cow” and “moo, moo” appears. Now, together, let’s write a function macSong(animal,sound), and send those parameters (“cow”, “moo, moo”) to a function that does the song!

What other animals lived on McDonald’s farm? Let’s change main() so that we also have them in the song!

Are there other places you see that you can use functions ? Now, work on your own program to see if using more functions improves the program! Call your program mcDonald.py.

3. To make sure you understand how Python returns results (if you have not already done this), define the cube(x) function into the Python shell; then call it with the code below. On paper, trace the values of variables answer and x inside cube(x) and of variables answer, result in the code snippet. Remember that there are really TWO variables named “answer”! VARIABLE SCOPE IS A CRITICAL CONCEPT! You will not understand functions unless you understand this.

Before you start, list the formal parameter(s): _________ , and the actual parameter(s) ___________.

>>> def cube(x):

answer = x * x * x

return answer

>>> answer = 4

>>> result = cube(3)

>>> print answer, result

4. This problem illustrates parameter passing: that it is positional. Consider the Python program funfunfun.py. Read it. Print it. Circle all the formal parameters, and box all the actual parameters.

Before you start, list the formal parameter(s): _________ , and the actual parameter(s) ___________.

Run funfunfun. Read the output of the program (the part that works) and the error message. You will likely see a lot of these! But, more subtle is the error where the parameter passed (actual parameter) is wrong, but does not stop the program. this will happen if the actual parameter (the passed parameter) is of the same (or consonant) type to the parameter expected (formal parameter). Then you just get a wrong answer, rather than a program failure.

Which kind of error is worse? __

5. Now, copy/paste funfunfun and rename it as funfunfun2. Remove the second call to funfun in main (the one that broke above).

Modify funfunfun2.py, so that the function funfun adds 5 to aNum (and prints that).

Now, run funfunfun2; what is the value of myNum in main? Note that it has NOT changed from when main set it! Be sure you understand why not!

Now, modify funfunfun2 so that it appends “fun” to each element of aList, and prints the new aList. Hint: In funfun you will want to iterate through aList :

for i in range (len(aList)):

 aList[i] = aList[i] + "fun" #does this look familiar from the midterm?

 print aList[i]

Run funfunfun2. What is the value of myList in main once it returns from funfun? Has it changed? The actual parameter myList, passed to funfun and changed inside it, is CHANGED upon return to main! WHY?

So you noted that myNum does not change, but myList does! Why is this?

The key concept here is that a complex object (a list, for example), when passed into a function, is passed by reference.

A simple parameter, such as an integer is passed by value.

6. Now it’s time for you to write some simple functions of your own. Get your convert.py program. Write a function “fToC(f)” that converts the parameter x (in Fahrenheit) and returns its equivalent in Centigrade. Test it, with code inline in main(). Write a second function “ctoF(c)” to convert c to Fahrenheit and returns that. Also test this function with code inline in main().

For extra credit (though everyone in DandI will want to do this!), write and test a function ktoC(k) that converts Kelvin to Centigrade. If you are really thorough, and for extra extra credit, you will want to write functions fToK, kToF, cToK. Note that you can call functions within functions to make this much easier!

7. Do problem 2 in the text, using the homework program naming convention (ch6P1.py). Your main should call at least one function that itself calls a function.

8. Extra credit: Do you think that a function that does not set a return variable returns nothing? If so, write and run a test function called “nada()” in a file called nada.py that proves you wrong. Do this even if you got that question right! Copy/paste your nada.py function into your Cubbie.

Hint: write a function “nada” that takes no parameters (or some parameters, it doesn’t matter), and returns no values, but prints a nonsense message like “here we are in nada land”. (Apparently, a Python function must have at least one statement.) Assign the function call to some variable, e.g., x = nada(). Then check the type of x, and print x. Is a variable, with value “none”, of nonetype nothing? Is nothing nothing? This is a deep metaphisical question; what, after all is real? (Hey, it's the ontology of computing!)

9. Do problems 3 and 4 in the text, using the homework program naming convention. ch6P3.py, ch6Py4.py

10. Extra credit: If you want to learn more about graphics, copy/paste futval2.py into your area, and modify it to use functions, as in the book (pp xx- yy). Do you agree that the program with functions is more readable?

11. If you complete these programs, and have copied them up to your Cubbie(s), you are free to start on the homework, for this week.

What is due by the end of Lab today:

· Hand in your lab6 pre-lab exercises with corrected answers, and

· Upload the programs you wrote in lab to your Cubbies\xxxyyynn\python\Lab6

· The 6 required (and 2 extra credit) lab programs are: mcDonald.py, funfunfun2.py, convert.py, ch6P1.py, *nada.py, ch6P3.py, ch6Py4.py, * futval2.py.

What is due by 7am Saturday:

· Any additional lab programs you complete, to Cubbies\xxxyyynn\python\Lab6

· Week 5 homework to Cubbies\xxxyyynn\python\hw5

Heads up!

· When you return from Thanksgiving December 1, your Python portfolio must be complete. No programs submitted after that date will count in your evaluation.

© J. Cushing, N. Nelson 2009
p 4 of 4
Rev. 11/2/2009

