Mathematical Origins of Life

Assignment 1 Solutions

Allman 1.1 Ex ,2,7,9,13;

1.1.2. a. Py = 2P, At =5 hr

b. In the following table. ¢ is measured in half-hours.

t 0 2 + 6 ] 10
By 1 1 16 64 256 1024

t 12 14 16 18 20 22
B || 4096 | 16384 | 65536 | 262144 | 1048576 | 4194304

c. According to the model, the number of cells after ten hours is over one mil-
lion. Since the observed number is around 30.000, this suggests that the model
only fits well at the early stages of cell division, and that during the first ten
hours (or twenty time steps) the rate of cell division has slowed. Understanding
how and why this slow down ocecurs could be biologically interesting.

1.1.7.

1.1.9.

a. k>landr =0
b.0<k<land —-1<r<20
c.k=1landr=10

t 0 1 2 3
Ny || 9613 | 1.442 | 2,163 | 3.2444

4.5667

1.1.13. a. The equation is precisely the statement that the amount of light penetrating

to a depth of d + 1 meters is proportional to the amount of light penetrating
to d meters.

b. k € (0,1). The constant of proportionality k can not be greater than 1 since
less light penetrates to a depth of d + 1 meters than to a depth of d meters.
Also, k can not be negative since it does not make sense that an amount of
light be negative.

c. The plot shows a rapid exponential decay.

d. The model is probably less applicable to a forest canopy, but it would depend
on the makeup of the forest. Many trees have a thick covering of leaves at the
tops of their trunks, but few leaves and branches closer to the bottom. This
means that it is more difficult for light to penetrate near the tops of trees than
it is near the bottom.



Allman Ch 1.2, Ex 2,5,7,8,9,11

1.2.2. AP will be positive for any value of P < 10 and AP will be negative for any

1.2.5.

1.2.6.

1.2.7.

1.2.8.

value of P > 10. Assuming P > 0 so that the model has a meaningful biological
interpretation, we see that a population increases in size if it is smaller than the
carrving capacity K = 10 of the environment. and decreases when it is larger
than the environment’s carrying capacity.

a. AP = 2P(1 — P/10); AP =2P — 2P% AP = 2P(10 — P); Pi41 =
3P, — 2P?
b. AP = 15P(1 — P/(7.5)); AP = 1.5P — 2P% AP = 2P(75— P);
Py =25P, — 2P}
b. The MATLAB commands x=[0:.1:12], y=x+.8*x.*(1-x/10), plot(x,¥y)
work.
¢. The cobweb diagram should fit well with the table below.

t | 0] 1 2 3 4 5

P || 1| 1.72 ] 2.8593 | 4.4927 | 6.4721 | 8.2088
However, it is hard to cobweb very accurately by hand, so you shouldn’t be too
surprised if your diagram matches the table poorly. Errors tend to compound
with each additional step.
After graphing the data. a logistic equation seems like a reasonable choice for
the model. Estimating from the table and graph, K = 8.5 seems like a good
choice for the carrying capacity. Since Pp/P, &~ 1.567, a reasonable choice
for r is .567. However, trial and error shows that increasing the r value a
bit appears to give an even better logistic fit. Here is one possible answer:
AP = .63P(1 — P/8.5).
a. My = My + .2M(1 — ;,_{6] where M; is measured in thousands of indi-
viduals. Notice that the carrying capacity is K = 200 thousands, rather than
200, 000 individuals. In addition, observe that if the model had been exponen-
tial, My = My + .2M;. that changing the units would have no effect on the
formula expressing the model.

b. Liyy = Ly +.2L4(1 — L), where L; is measured in units of 200, 000 individ-
nals.




1.2.9.
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1.2.11. a. The equation states the change in the amount N of chemical 2 is propor-

tional to the amount of chemical 2 present. Values of r that are reasonable are
0<r<1and Ny =0. (However, if r = 1, then all of chemical 1 is converted
to chemical 2 in a single time step.) A graph of N; as a function of ¢ looks like
an exponential decay curve that has been reflected about a horizontal axis, and
moved upward so that it has a horizontal asymptote at N = K. Thus, N; is
an increasing function, but its rate of increase is slowing for all time.

b. The equation states the amount of chemical 2 created at each time step is
proportional to both the amount of chemical 1 and the amount of chemical 2
present. This equation describes a discrete logistic model, and the resulting
time plot of N; shows typical logistic growth. Note that with a small time
interval, r should be small, and so the model should not display oscillatory
behavior as it approaches equilibrium. If Nj equals zero, then the chemical
reaction will not take place, since at least a trace amount of chemical 2 is
necessary for this particular reaction. The shape of a logistic curve makes a lot



Allman 1.3, Ex. 6(a)(c),7(a),11

1.3.6.

1.3.7.

a. P*=10,15

b. P*=10,44

c. P*=10,20

d. P*=0.a/b

e. PP=0,(c—-1)/d

a. At P* = (0, the linearization is p;,; ~ 1.3p,. Since |1.3| > 1, P* =0 is

unstable. At P* = 15, the linearization process gives

15+ pro1 = 1.3(15 +p¢) — .02(15 +pe)* =

15 + pres = [1.3(15) — .02(15)%) + 1.3(pe) — .02(30p; + p2) =
pes1 = 1.3(pt) — 02(30p; + pe°) =
pes1 & 1.3(pt) — .02(30p;) = .Tps.

Since |.7] < 1, P* = 15 1s stable.

1.3.11. a. Since the concentration of oxygen in the blood stream can not be more than

that of the lung, B can not change by more than half the difference (L — B);
thus, 0 < r < .5,

b. AB=r(K —2B)

c. If we choose an initial value 0 < By < .5 for the oxygen concentration in the
bloodstream, then B steadily increases up to B* = 5K . The rate of increase
slows as B gets close to 5K, If r 1= increased to values just slightly smaller
than .5, then B approaches equilibrium quite quickly, much more quickly than
with r = 1.

d. B* = K/2. (Note that the denominator is the total volume of the two
compartments, and B* has the correct units.) This answer makes sense in
that the equilibrium concentration for B (and for L) would be (amount of
oxygen)/(total volume).

e. Ab=r(K — 2(K/2+ b)) = —2rb;. Equivalently, byyq1 = (1 — 2r)b;.

f. b = (1 —2r)'bo. B; = K/2+ (1 —2r)"hy. Note that by < 0, since we assume
that L = B initially. So, since 0 < 1—2r < 1, B increases up to its equilibrium
value of K /2.

g. Suppose the volume of the lung is V; and the volume of the bloodstream is
Vg, then the total amount of oxygen K = LV, +BVp and L = (K — BVg)/VL.
The equation for AB then becomes ABF = r((K — BVg)/V, — B) and the
equilibrium is B* = K/(VL, + Vi), ete.



