Mathematical Origins of Life Assignment 2 Solutions
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2.1.1. (l”?) =(0,17)
b. (-
“ (3

11, -13}

1,
0
17 dU

(5 75)

2.14. a.
1

£
(:

(

i

= Lo
I—lgm'—‘ﬂhuﬂl—‘w
=

G = b
[k |

— . . ..o 9832 0247 4 (9779 0368
2.1.6. Rounding to 4 decimal digits, P~ = (.UME ‘9?53). P = (.UEEl .9632)'

pooo _ (62506250

S0 3Th0
suceession model if the time steps were taken to be two years, three years, or
five hundred years respectively. Interestingly, the columns of P*™ are identical
and the column entries are in the same ratio as the equilibrium ratio of A trees
to B trees that we saw in the text.

. The matrices are the transition matrices for the forest



2.1.9.
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a. The transition matrix is P= | .04 0 0 | with x, = (E,, L;. 4;).
0 .39 .65
0 2847 4745 1.1388 185055 30.8425
b. P = 0 0 2.02 |, P* = 0 1.1388 1.808 |. No-
0156 .2535 .4225 01014 164775 1.413425

tice that in P? there are now non-zero off-diagonal entries (signifying interaction
among the sizes of the classes) and that the (3, 3) entry is larger than in the
last problem. These are the effects of 65% of the adults living on to the next
cycle and reproducing again.

c. All three populations appear to grow ronghly exponentially. There is some
oscillation in the population values that is particularly noticeable for a small
mumber of iterations. Of course, if 65% of the adults live on into the next
time step to produce eges, the populations should grow even faster than in the
previous problem.

Chapter 2.2 1,3,5,6,8,10,12

2.2.1.

2.2.3.

2.2.6.

2.2.8.

The matrix for the first insect model is a Leslie matrix, and the matrix for the
more complicated insect model is an Usher matrix, where the addition of .65 in
the (3, 3) position is for the 65% of the adult population that live on into the
next reproductive cycle. See problems 2.1.8(a) and 2.1.9(a) for the matrices.

Letting A, B, and ' be the matrices in the order given, det 4 = =1, A~ =
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b. 50%
c. 20% of the organisms in the immature class remain in the immature class
with each time step.
d. 30% of the organisms in the immature class progress into the adult class
with each time step.
. (=625 375
a P =1 a1 -.25)
b. xo = (1000, 300), x5 = (1570, 555),

.11 represents the percentage of pups that remain pups after one year. (Pups
can not give birth.) One possible explanation for some pups living but not
progressing into the yearling stage after one year is that coyotes are born over
several months throughout the year. The .15 entries indicate that on average
each yearling and adult gives birth to .15 pups each year. The percentage of
pups that progress into the yearling stage is 30% each year, so 1=.11=.30 = 59%
of pups die. While 60% of the yearlings progress into the adult stage, the
remaining 40% die. Finally, each year 40% of the adult coyotes die, but 60%
live on into the next time step.
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2. The values of the populations are given in the table below. The populations
seem to be stabilizing with A4, = 85.7 and B, = 114.3.
¢ 0 1 2 3 4 i
Ay || 100.0000 | 91.6667 | S8.1044 | B6.74TT | 86.1449 | 558037
By || 100.0000 | 108.3333 | 111.8056 | 113.2523 | 113.8561 | 114.1063
¢ i T ] 9 10
Ay || 85.TEO0D | 85,7454 | H5.T2T3 | BL.TI97 | B5.T165
By || 114.2110 | 114.2546 | 114.2727 | 114.2803 | 114.2835
e. If the initial populations Ay and By are non-negative and sum to 200, then
they tend toward an equilibrium of around (85.7, 114.3).

s0 using decimal approximations A, = 52784, +

2.3.1. The model does behave as expected, showing slow exponential growth in both
classes, with decaying oscillations superposed.

2.34. a. In zeroing out the first row, no new ungerminated seeds are added to the
population. Since the (2, 1) entry has been replaced with zero, no ungerminated
seeds progress into the class of sexually immature plants. This eliminates the
class of ungerminated seeds from the population. [One reason for considering
this model would be to understand the effect of ungerminated seeds on the
population dynamies, by imagining what would happen in their absence. )

b. The dominant eigenvalues of the model in the text 15 1.1694 and the domi-
nant eigenvalue of the altered matrix is 1.1336. This means that both models
predict exponential growth, though the growth rate for the model with no
ungerminated seeds is slightly slower. If the ungerminated seed entry of the
dominant eigenvectors is discarded. there is also little difference in the stable
stage vector for the two models.

c. The ungerminated seeds might be gathered by animals and spread through-
out a region, possibly germinating in a later vear and spreading the plant
species. Also, if the plants have a bad year (due to factors not included in
the model, such as drought, extreme cold, fire, ete.) and many fail to survive,
the ungerminated seeds still remain in the area despite the temporary adverse
growing conditions. If they then germinate at a later date, this may help the
population recover. Even though they have little effect on the ‘normal year’
population dynamics, the ungerminated seeds may well be important.



2.3.5.

2.3.7.

2.3.9.

a. The model should produce slow exponential growth. One way to see this is
to notice that after one time step 40% of the first class survives to reproduce
and 30% remain in the first class. Of the 30%, the model indicates that 40%.
or (.3)(.4) = 12% will survive to reach the reproduction stage after a second
time step. This means that at least .4+ .12 = 52% of the first class will survive
to reproduce. Since on average, each adult produces two offspring, we should
expect at least (.52)2 = 1.04 > 1 offspring produced by individual members of
the first class on average. Thus, the population will grow slowly. In fact, the
growth rate should be a little larger than 1.04, since (.3)%(.4) = .036 = 3.6%
of the first class progress into the second stage after three time steps and then
reproduce. Similarly, for four, five. ... time steps. Clearly, the situation is
somewhat complicated and an eigenvalue analysis can help us understand the
growth trend more easily.

b. The eigenvalue 1.0569 is dominant with eigenvector (.9353,.3540). The
other eigenvalue is —.7569 with corresponding eigenvector (—.8841, .4672).

¢. The intrinsic growth rate is 1.0569, a number a little bit bigger than 1.04 as
anticipated by (a). The stable stage distribution is (2.6423, 1).

d. Using eigenvectors calculated by MATLAB, (5.5) = 9.0100(.9353, .3540) +
3.8757(—.8841, 4672).

e. x; = 0.0100(1.0560)"(.9353, .3540) + 3.8757(=.7560)"( —.8841, .4672).

The dominant eigenvalue is .6791 so the coyote population will decline rather
rapidly. The stable stage distribution is (2.2636, 1, 7.5877).

a. The transition matrix P = (1?6 1? d) is for an Usher model.

b. The dominant eigenvalue is 1.0464 with eigenvector (.9788,.2048). The
other eigenvalue is —.7964 with eigenvector (—.9876,.1573).

¢. The intrinsic growth rate is 1.0464 and the population will grow. The stable
stage distribution is (4.7783, 1).

241, a A M=land =68 Ai=—-1land Ao =5 C: Ay = -3 and Aa =2

b A v = (3.1), va = (L—1); B: v; = (—2.1), va = (L,1); C: vy = (-3,2),
va = (1,1)



