Allman Ch 4.3 Prob 3,5,6,7,8,9

Ch 4.3

- 4.3.3. a. Sensitivity is P(+ result | disease); Specificity is P(− result | no disease).
 - b. False positive: P(+ result | no disease); False negative: P(- result | disease).
 - c. Sensitivity = 22/30 = .7333; Specificity = 1739/1790 = .9715.

4.3.5

$S_1 \backslash S_0$	A	G	C	T
A	.778	0	.111	.111
G	.083	.75	.167	0
C	0	.182	.636	.182
T	.125	0	.125	.75

- b. $\mathcal{P}(S_1 = i \mid S_0 = j)$ is the conditional probability that given a j in S_0 it mutates to become an i in S_1 . However, $\mathcal{P}(S_0 = i \mid S_1 = j)$ is the conditional probability that given a j in the descendent, it came from an i in the ancestor. The first is found by dividing an entry in the table by its column sum, the second by dividing by its row sum.
- 4.3.6. a. The diagonal entries correspond to no mutation occurring. These are likely to be the largest, since point mutations are rare.
 b. Transitions: entries (1, 2), (2, 1), (3, 4), (4, 3); Transversions: entries (1, 3),
 - (1,4), (2,3), (2,4), (3,1), (3,2), (4,1), (4,2). This table does not support the hypothesis that transitions are more common than transversions.
- 4.3.7. a. The distribution of bases in S_0 is estimated by $p_A = .225$, $p_G = .275$, $p_C = .275$, $p_T = .225$.
 - b. The distribution of bases in S_1 is estimated by $p_A = .225$, $p_G = .3$, $p_C = .275$, $p_T = .2$.
- 4.3.8. a. $\mathcal{P}(S_0 = A) = .225$, $\mathcal{P}(S_0 = G) = .275$, $\mathcal{P}(S_0 = C) = .275$, $\mathcal{P}(S_0 = T) = .225$, $\mathcal{P}(S_1 = A) = .225$, $\mathcal{P}(S_1 = G) = .3$, $\mathcal{P}(S_1 = C) = .275$, $\mathcal{P}(S_1 = T) = .2$. b. No, since $\mathcal{P}(S_1 = i \text{ and } S_0 = j) \neq \mathcal{P}(S_0 = i)\mathcal{P}(S_1 = j)$. For instance, since $\mathcal{P}(S_1 = i \text{ and } S_0 = j) = (1/40)(\text{the } (j,i) \text{ entry of the table})$, we find $\mathcal{P}(S_1 = A \text{ and } S_0 = A) = 7/40 = .175 \neq (.225)(.225) = .050625$.
 - c. Since the sequences are related and mutations are rare, the appearance of a particular base at a site in S_0 means it is highly probable that the same base would appear at the same site in S_1 , i.e. the events $\{S_0 = i\}$ and $\{S_1 = j\}$ are not independent.
- 4.3.9. a. Since there is no relationship between the two sequences, knowing information about one should convey nothing about the other.
 - All the columns would be the same.