Mathematical Origins of Life Assignment 6 Solutions

Allman Ch 4.4 Prob 3,5,8,9,10, 15 Allman Ch 4.5 Ex 1,3,5,7,13
1.4.3. a. About 27 z-.‘bﬁpa-; to be within .05; about 67 steps to be within .01.

4.4.5. Because mutation is rare, the conditional probabilities describing no change
should be largest.

4.4.8. a. The first theorem applies to M, but the second does not since M has some
zero entries. (However. since M? has all non-zero entries. you can apply the
second theorem to it.)

b. (.1849,.3946, 2819, .1386)

B33 0 0 111
D83 B89 0 0
A4« — = 4 =Y A —
4.4.9. a. po = (.3..225,.25, .225), M 0 111 1 11
L83 0 | —f

b. pg is reasonable close to (.25,.25,.25,.25). M may secem less close to a
Jukes-Cantor matrix than vou might expect. because of the variation in the off-
diagonal entries. One way to estimate o is to average the off-diagonal entries
to estimate a /3. This gives a/3 = .0416, so a = .1248,

4.4.10. a. The Jukes-Cantor model is more appropriate for the pair S{., S|. since a
particular base seems to mutate to any of the other three bases with roughly the
same frequency. Note also that the bases in S are in roughly equal numbers.
b. The Kimura 2-parameter model is more appropriate for the pair Sp, Si.
since the data shows that transitions are more likely than transversions. Note
also that the bases in Sy are in roughly equal numbers.

4.4.15. a. po = (.15, .25,.35, .25) is not an equilibrium base distribution for the Jukes-

701 1 .1

] .7 1 1

Cantor matrix M = 1 1 7 1
1 .1 1 .7

b. po = (.19..25,.31,.25) is not an equilibrium base for the transition matrix
05260 .06 0484 .06
1316 .7 .0806 .1 -

M = 1842 14 7903 14 | which is not Jukes-Cantor.

A316 .1 0806 .7

¢. po is unchanged by multiplving by M it is an equilibrium. Notice that pg
is an ecigenvector of M with cigenvalue 1.

d. The initial vector is drawn towards the stable equilibrium (.25, .25,.25, .25).
This pp corresponds to an initial sequence comprised entirely of G's.

4.5.1. .1367



4.5.3. a. 2224580274
b. 2308224444
c. The Kimura 2-parameter distance is probably a better choice (assuming
we did not already know that the sequences were created with the Kimura
2-parameter model). The frequency table shows a definite pattern of more
transitions than transversions. Notice too that the distances differ in the second
decimal position.

4.5.5. Graph the Jukes-Cantor distance on a graphing caleulator or computer.
a. If the sequences are identical, then p = (. This means the Jukes-Cantor
distance is —.75log(1) = 0.
b., ¢. Mathematically, if two sequences differ in more than 3/4 of the sites, then
p = 3/4. Then the Jukes-Cantor distance formula requires taking the logarithm
of a negative number, which is impossible. This 15 not a limitation with real
data. If we took two sequences that were in no way related, we would expect
that about 1/4 of the sites agree and about 3/4 of the sites disagree, since with
a uniform distribution of bases about 25% of the time the two sequences should
agree if everything is chosen at random. For related sequences the formulas for
the Jukes-Cantor model derived in the last section show p is at most 3/4, and in
practice p is usually much less than 3 /4. Notice that the Jukes-Cantor distance
gets huge as the values of p get close to .75, This is desirable, since distances
should be large when comparing sequences that appear almost unrelated.

4.5.7. Substituting (1 —gq) for p yields dje = —3In(1 —4p)=-3In(1 - 3(1 —¢q)) =

“Sin(dg-§)= -3m(id)
4.5.13. The Kimura 3-parameter distance i1s given by dgs = —% (In{1—253—2v)

—In(1—-23—26) —In(1 - 23— 2v)). Substituting «/3 for 3, v, and § gives
1
d= -1 (In(1—2a/3 —2a/3) —In(1—2a/3 —2¢/3) —In(1l —2a/3 — 2a/3))

31n (1 — 4a/3)) = dse.
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