If it is necessary to address the strategies and payoffs of players when describing a situation in terms of game theory, it can be said that the following demonstration would not even entirely fit the description of a game: students are given four assignments involving the numeric values 1-10, ranging from random number selection to more involved theoretical calculations. The players (namely, the students) were unaware of the outcomes that would be associated with their strategies of selection. Whether this had to do with the nature of the game itself or the inexperience of the participants is another matter altogether.

For the initial exercise of choosing a random number, the ideal results would resemble something close to an even distribution among the values (obviously approaching equal ratios with a greater test population). However, it appeared as though the majority of the group interpreted the task as avoiding the most obvious choices: 1 and 10. This brought the mean to 5.21 and the standard deviation to 2.08 , as the most popular values were within the 3-7 range. The intended originality is admirable, but the frequencies became skewed for it.

Random Number Selection

12345678910

Numbers

Number Flash Mob The question prompting a selection that would

"Avoiding the crowd" would have worked well had everybody selected a number at random. However, the previous question likely influenced an aversion to five and seven, so, ironically, they would have been the best choices given the results. The mean was 3.93 , which means that the population's perception of an unpopular seems to be a low number. A few outliers on the high end of the spectrum brought the standard deviation to 3.03 .

The final exercise proved to be the most intellectually challenging to the
Below Average
group, as evidenced by the fact that
rationally unfounded responses (i.e. anything above seven or so) made their
would prove to be the most or least popular. That said, there is a reason we use people as test subjects as open so, the average estimate of $2 / 3$ of the mean ended
up being 4.95 with a standard deviation of 2.13 . Even though this does not
readings from a number-generating system. There is as much social information to process as there are
mathematical calculations. Aside from gaining experience in statistical measures, the experiment was one in human
predictability (or lack thereof), and it seems to have served its purpose.

