Operating Systems Exam 1, Fall 2009

1. Given the attached tables of maximum demand, current allocation and available resources, determine whether the following requests can be safely granted according to the banker's algorithm. If the request cannot be safely granted then explain why the resulting system state is not safe after granting the request. If the request can be granted then show the sequence of processes and corresponding table of available resources that demonstrates the safety of the system after granting the request.

a) P4 requests (0,0,1,0) of resources (R1, R2, R3, R4)

b) P3 requests (0,1,0,0) of resources (R1, R2, R3, R4)

2. The Unix fork system call creates a child process by making a separate copy of the parent process state that becomes the initial state of the child process. Both the parent and the child process execute the same code body, so special tests must be made in the code to determine which part of the code to execute in the continuing parent process and which part of the code to execute in the child process.

a) Describe the sequence of actions that occur for both the parent and the child of the attached C program that registers and uses signal handling. Be clear about which actions happen concurrently and which actions have strict order dependency.

b) Predict the output of the attached C program. Give all possible ordering of the output lines. (Output lines won't be interrupted in the middle of a line). Justify your answer.

3. Give a table showing a possible (and simple) sequence of process states traversed by the child process of the attached C code. Use the Unix Process State Transition Diagram given in Chapter 3 of your text on page 145. For each state, indicate the source code associated with that state and/or the event associated with entering that state. Receipt of a signal is an event and consider the execution of a trap-to-kernel-mode an event also. Assume that no swapping in or out of memory takes place. State any other assumptions you are making about your possible (and simple) sequence of process states.

4. Consider a system with a maximum of 100 megabytes of memory, a quad core SMP CPU and three processes with the following characteristics. Assume all three processes enter the system at the same time. For the requested calculations below, ignore system overhead time. Show calculations.

· P1 needs 50 megabytes and has a duration of 30 min

· P2 needs 60 megabytes and has a duration of 20 min

· P3 needs 40 megabytes and has a duration of 15 min

a) Draw an execution bar graph showing an “efficient” execution of the three processes over time. Make your vertical axis be processor number and your horizontal axis be elapsed time. For your schedule of execution, calculate the system throughput from start to completion of all jobs.

b) For your schedule of execution, calculate the response time for each process and the overall average response time.

c) For your schedule of execution, calculate the CPU utilization of the quad core (all together).

d) Now give an “efficient” schedule of execution for the three processes on a multi-programmed uniprocessor.

e) Calculate the system throughput for the three processes for your uniprocessor schedule.

f) Calculate the response time for each process and the overall average response time for your uniprocessor schedule.

g) Calculate the CPU utilization for your uniprocessor schedule.
5. Give a solution to the attached (and simplified) Sleeping Barber problem using semaphores. You will need to give pseudo code for the barber and pseudo code for the customers. Assume customers have a get_haircut() function and the barber has a cut_hair() function and that these two functions already know how to talk to each other once the customer is with an awake barber. Your solution does not have to be efficient, but should be safe from deadlock, starvation, race conditions and corruption.

