
Unix System Programming - Chapter 4

Neal Nelson

The Evergreen State College

Apr 2010



USP Chapter 4 - Unix IO

I Sections 4.1, 4.2 - Unix read and write

I Section 4.3 - Unix open and close

I Section 4.6 - ISO C standard IO Library (fopen, fread, etc.)

I Section 4.7 - Filters and Redirection



Unix IO

I Unix device IO abstraction

I USP Section 4.2

I #include <unistd.h>

I open, close, read, write, ioctl

I uses file descriptors (type int)

I STDIN FILENO, STDOUT FILENO, STDERR FILENO



C stdlib IO

I Stream IO abstraction

I USP Section 4.6

I #include <stdio.h>

I fopen, fscanf, fprintf, fread, etc

I uses file pointers (type FILE)

I stdin, stdout, stderr

I should be OS independent



Unix Device read, write

I Devices are in the /dev directory

I Devices are represented by special files (vs regular files)

I Block special files (eg, disks)

I Character special files (eg, terminal)

I All devices use a uniform device abstraction (open, close, etc)

I Low level and lots of conditions and errors to check and handle

I Example read - see readline.c p95

I r read, r write from the restart library make programs simpler

I Example write - see copyfile.c p100 using r read and r write



Unix Device open, close

I open associates a file descriptor with a file or physical device

I pass a path string and a flags parameter

I flags parameter has access modes (read, write, append, block
or no, etc)

I bitwise or together all the desired flags

I creating a new file requires a third parameter with permissions

I low level and lots of conditions and errors to check and handle

I Example - a whole copy program copyfilemain.c p106 using
copyfile.c

I Oh yeah, don’t forget to close or r close



select and poll

I Sections 4.4, 4.5

I Handling input from multuple sources.

I select and poll functions



File Representation

I Unix IO uses file descriptors

I C stdio (fopen, fread, etc) uses FILE pointers

I Both are considered handles for device IO

I C stdio FILE pointers are one level abstracted from Unix file
descriptors

I The USP discussion of file representation is a model (so
details may differ on actual systems).

I Open associates a file or physical device with a handle used in
a program



File Tables

I See Figure 4.2 p120

I File Descriptor Table - per-process, in user address space

I system file table - shared by all processes, entry for each
active open, in kernel space.

I in-memory inode table - entry for each active file in the
system, copies of the inodes on disk, in kernel space.

I system file table has file offsets, access modes, and the
number of descriptor table entries pointing to it.

I An active file may be shared by distinct processes, but each
process will have its own system file table entry.

I Open creates a file descriptor table entry pointing to an entry
in the system file table.

I A fork causes parent and child to share a system file table
entry and therefore share offsets. Hmmmm.



File Pointers and Buffering

I C stdio functions use file pointers not file descriptors.

I See Fig 4.3 p122. FILE structures are in user space and
contain buffers and file descriptors.

I a file pointer is a handle pointing to a handle.

I C stdio buffering requires specific handling of buffer flushes
(fflush).

I Unix IO no doubt has buffering of its own in kernel space, but
I’ll bet buffer flushing is only an issue in error or crashing
circumstances. (See p124)

I Stderr is not buffered!



Forks and file descriptors

I Section 4.6.3 pp124-128. Interesting and detailed examples of
the consequences of shared system file table entries.



Filters and Redirection - command line

I Command line redirection

I See Figure 4.6 p130.

I cat > my.file replaces stdout file descriptor table entry with
my.file



Filters and REdirection - C program

I See Figure 4.7 p131.

I The trick is to use dup2 system call for copying file
descriptors.

I See example redirect.c p131 for how to do this in a C program.


