Please complete the following questions by Tuesday October 4th. Show all your reasoning. Use diagrams to illustrate questions 3,4 and 5 .

1. For the following sequences, find a recursive formula and a general formula
(a) $10,7,4,1, \cdots$ recursive: $u_{n}=u_{n-1}-3$ general: $u_{n}=10-3(n-1)=13-3 n$.
(b) $3,-6,12,-24, \cdots$ recursive: $u_{n}=-2 \times u_{n-1}$ general: $u_{n}=3(-2)^{n-1}$.
2. A sequence is defined by the relation $u_{n}=u_{n-1}+5$ with $u_{1}=3$. Find a general formula for the sequence and hence find the 30th term.
$u_{n}=3+5(n-1)=5 n-2$. So $u_{30}=5(30)-2=148$
3. A ball is dropped and bounces to to $3 / 4$ of its original height. On each successive bounce its height is reduced further by a factor of $3 / 4$. If the ball is released from a height of 4 feet, find
(a) the maximum height it reaches after the first, second, third, and fourth, bounce. $3, \frac{9}{4}, \frac{27}{16}, \frac{81}{64}$.
(b) how many bounces it takes before the ball no longer bounces higher than 6 inches above the ground.
After 7 bounces.
(c) a recursive formula for the height after n bounces.

$$
u_{n}=\left(\frac{3}{4}\right) u_{n-1} \text { and } u_{1}=3 .
$$

(d) a general formula for the height after n bounces.

$$
u_{n}=3\left(\frac{3}{4}\right)^{n-1} .
$$

4. Consider the problem of stacking balls in the shape of a square pyramid. On the top there is one ball, on the next level there are 4 balls arranged in a square, on the next level there are 9 balls arrange in a square and so on. The total number of balls in a square pyramid with n levels is called a square pyramidal number.
(a) What is the total number of balls in a pyramid of 2 levels? 3 Levels? 4 Levels?
$1+4=5,1+4+9=14,1+4+9+16=30$.
(b) How high a pyramid could you build with 100 balls? $1+4+9+16+25+36=81$. So there would be 6 levels with 19 left over.
(c) Find a recursive formula for the nth square pyramidal number. $u_{n}=u_{n-1}+n^{2}$ and $u_{1}=1$
(d) Challenge for the mathematically inquisitive: Find a general formula the nth square pyramidal number.
The idea here is to realize that a square pyramidal number is the sum of two consecutive tetrahedral numbers (because a square is the some of two consecutive triangular numbers). In the worksheet solutions I explained that the general formula for the tetrahedral numbers is $t_{n}=\frac{1}{6} n(n+1)(n+2)$. So the general formula for the square pyramidal numbers is

$$
p_{n}=t_{n}+t_{n-1}=\frac{1}{6} n(n+1)(n+2)+\frac{1}{6}(n-1) n(n+1)=\frac{1}{6} n(n+1)(n-1+n+2)=\frac{1}{6} n(n+1)(2 n+1) .
$$

5. A drone bee is a male bee in a hive whose sole purpose in life is to fertilize the eggs produced by the queen bee. Interestingly fertilized eggs always result in female bees. A new drone is produced from an egg which is not fertilized. Consequently a drone bee has a mother (the queen) but no father! On the other hand, as a female the queen bee has both a mother and a father.
(a) How many grand parents does a drone have?

2 grand parents
(b) How many great grand parents does it have? How many great great grand parents? What sequence is this?
3 great grand parents and 5 great great grand parents. This is the Fibonacci sequence
(c) Find an recursive definition for the resulting sequence?
$u_{n}=u_{n-1}+u_{n-2}$, with $u_{1}=2$ and $u_{2}=3$.

