
The Future of Social Learning in Software Engineering

Emerson Murphy-Hill
emerson@csc.ncsu.edu

Abstract—Social learning in software engineering is a way
for software developers to learn from what other software
developers have done before them. In the past, social learning
has taken many forms, including over the shoulder learning
and blogs. In this article, I present nine principles of effective
techniques that facilitate social learning. To illustrate how these
principles apply, I outline one such technique called continuous
social screencasting, which aims to help developers learn about
new software development tools. I then discuss other ways
that social learning technology can help software developers
by automatically capturing and sharing their activities with
peers.

Keywords: social screencasting, social learning, tool discov-
ery, software engineering

I. INTRODUCTION

To design, build, and maintain the software that is an
important part of our day-to-day lives, software developers
are increasingly challenged for several reasons. First, as
the diversity of people who use software grows, so too do
users’ expectations of what they can accomplish with it.
Second, even as new software is written, old software must
be maintained. Third, developers’ cognitive and perceptual
abilities remain relatively fixed, even as software becomes
larger and more complex. Fourth, as software is integrated
into increasingly critical applications, developers are under
pressure to write software that runs correctly, reliably, and
safely at all times.

Software developers meet their challenges by learning
how to improve their practice, both learning long-term skills
that will benefit them throughout their careers and short-term
skills that will help them on a single, immediate task. For
example, consider these learning examples:

• A developer’s coworker comes into the developer’s
office and notices him using a particular sequence of
development environment commands for restructuring
his code. The coworker says that she would have done
the same restructuring with the development environ-
ment’s refactoring tools instead, and that it would have
saved the developer a significant amount of time. The
developer did not know that these refactoring tools
existed, and tries them later on his next restructuring
task.

• A developer is about to work on a new project that
needs to store and retrieve data quickly. She learns
about a new database technology by searching Google,

finds and reads a book about the technology, tries it in
a small application, uses it when she starts her project,
and uses it for several future projects.

• A developer regularly reads a blog on software devel-
opment. On one post, the author talks about his team’s
communication challenges and how they addressed
those challenges using scrum, a particular type of fre-
quent meeting where people share status updates. The
developer recognizes that her current team faces many
of the same communication challenges, and decides to
try scrum.

What each of these examples have in common is they ex-
hibit social learning. Social learning in software engineering
can be defined as

The practice of harnessing the efforts of past
software engineers to help decrease the effort of
present software engineers.

As we can see from the examples, social learning in
software engineering is not new, yet it’s a powerful lens
through which we can find the solutions to our most pressing
software challenges. In each of the examples, social learning
is facilitated by a specific technique, from books, to blogs,
to face-to-face conversations. While social learning can be
facilitated by many techniques in software engineering, it
has the following general steps:

• People perform a software engineering task.
• Information about that task is recorded, even if that

record is only a memory.
• A new person performs or plans to perform a new

software engineering task.
• Elements of the new task are compared against the

record of prior tasks.
• Relevant elements of the old task are extracted and

presented to the person who is performing the new task
in the form of a recommendation, improving that task
or future tasks.

Although each of the previous examples fit these steps,
each social learning technique is not equally appropriate in
all situations. In the remainder of this article, I discuss what
makes social learning effective, and in turn what the future
of social software engineering holds.

II. PRINCIPLES OF EFFECTIVE SOCIAL LEARNING

What makes one technique that facilitates social learning
more effective than another? Let us examine nine principles



that make up a good social learning technique:

Recording Efficiency. Techniques that facilitate social
learning should reduce the overhead of recording task infor-
mation as much as possible. For example, a developer might
learn from her past mistakes by looking at old versions of
her files. Some development environments keep old versions
of files automatically – this records the file history with no
extra effort for the developer, although there is some disk
space overhead. As another example, writing a blog post
about scrum does not require much disk space overhead, but
can entail a significant overhead on the part of the developer
to take the time to write the blog post.

Learning Efficiency. Techniques that facilitate social learn-
ing should reduce the overhead of learning. Considering
again the book about databases, for a reader to learn from
the book, she must incur some learning overhead to take
time out of her day to read the book. On the other hand,
there is no learning overhead imposed on the author of the
book – the author can teach any number of learners without
any additional overhead. To take another example, suppose
a manager notices that his team is consistently missing its
deadlines, then pores over the source code and finds that the
cause is that the team is incurring significant technical debt,
and finally shows the team how to refactor to pay down
that debt. In this case, the process of learning to refactor in
response to technical debt incurs significant overhead by the
manager who had to spend time recognizing the problem,
but relatively little overhead is incurred by the team to learn
what the problem was.

Privacy Preservation. Techniques that facilitate social
learning should preserve privacy as much as possible. For
example, if a blog author is writing about her experience
implementing scrum, the company the author works for may
not want others to know if the methodology did not work. On
the other hand, the author may be able to post the experience
with the methodology anonymously to preserve the privacy
of the company.

Targeting. Techniques that facilitate social learning should
target the people who will benefit the most. A blog post
about scrum has a good opportunity to reach the right people,
since it will likely be searchable on the internet. If a user
realizes that she needs scrum, she may be able to search for
the blog post. On the other hand, if there is another developer
that does not realize that her team is having communication
problems at all, so she may not think to search for ‘scrum’,
and thus she may not learn of the blog post at all.

Trust. Techniques that facilitate social learning should en-
able the learning developer to trust the recommendation. On
one end of the spectrum, a developer who learns from a
coworker about a tool she used might have a high degree

Figure 1. An xkcd comic illustrating the importance of feedback. The
author’s comment on the comic reads “All long help threads should have
a sticky globally-editable post at the top saying ‘DEAR PEOPLE FROM
THE FUTURE: Here’s what we’ve figured out so far. . . ”

of trust because they have worked together before and have
similar goals. On the other hand, a developer who learns
about database technology from a book may not trust the
author because she suspects the author is only aiming at
selling books.

Rationale. Techniques that facilitate social learning should
provide a useful rationale for why the recommendation is
relevant to the learner. For example, a blog post about scrum
may explain what problem the author was trying to solve
and why she believed scrum would help. If a reader of the
post has similar problems as the original developer, she may
understand the rationale for while she should implement
scrum. However, if there are multiple possible rationales for
implementing scrum and the blog post explains just one, the
reader may not understand how why scrum would be useful
for her.

Feedback Efficiency. Techniques that facilitate social learn-
ing should allow learners to provide feedback about why a
recommendation was or was not useful to them. Comment-
ing on a scrum blog post is efficient in the sense that a
reader can easily add text, but inefficient in that it may take
significant effort on the part of the reader to add a comment
that fully expresses why the recommendation worked or did
not work. Figure 1 illustrates the importance of efficient
feedback.1

Bootstrapping. Techniques that facilitate social learning
should allow the benefits of learning to be present without an
extensive, existing community. As an example, learning from
peers does not require a large company to work effectively;
instead, only one peer is necessary. As a counterexample,
even a very book may have little impact if it has no
readership.

1http://xkcd.com/979



Generality. Techniques that facilitate social learning should
be general enough to allow developers to learn a variety of
things. For example, blogs in general can teach readers about
any kind of software engineering innovation, from tools
to processes. However, the question-and-answer site Stack-
Overflow2 discourages developers from asking subjective or
open-ended questions because the site was not designed to
be able to organize that type of information.

The future of social learning is to develop techniques that
balance and maximize these principles. While it is unlikely
that a single technique will maximize all of these principles,
different techniques will be appropriate in different situations
and for different software engineering tasks. As the example
of blogs show, technology can help facilitate and accelerate
social learning in software engineering. But blogs are just
one example of how technology is helping social learning in
software engineering; let us examine another example that
my research group is currently exploring.

III. AN EXAMPLE: FACILITATING TOOL DISCOVERY
THROUGH SOCIAL LEARNING

A. The Problem

One way that software developers can cope with the
challenges of building increasingly complex and sophisti-
cated software is by using software development tools. Such
tools come in many forms: as shortcuts in editors, as stand-
alone command-line programs, and as plugins, features, and
views in integrated development environments. Tools range
from very high-level and broad, such as profilers, to very
low-level and specific, such as hotkeys for navigating to a
variable definition. Both research and practice suggest that
tools can improve software quality and reduce development
time. For example, Ko and Myers’ showed that the Whyline
debugger can reduce the time it takes to successfully debug
programs [2].

Despite the benefits that tools offer, many software de-
velopers only use a small subset of the available tools.
For instance, based on data collected automatically in the
Eclipse integrated development environment from hundreds
of thousands of software developers, of the more than
1100 commands that are available in Eclipse, on average
developers use only 42 of them.3 While we obviously
should not expect developers to use 100% of the available
tools, even tools that are widely useful are underused. For
example, consider the Open Resource tool in Eclipse that
enables developers to open files with only a few keystrokes.
The benefits of this tool are probably the reason that it
was listed as the first command on the highly popular
blog post, “10 Eclipse Navigation Shortcuts Every Java
Programmer Should Know”4 and “one of the most useful

2http://www.stackoverflow.com
3http://www.eclipse.org/org/usagedata/reports/data/
4http://goo.gl/v7PXd

tools in Eclipse”.5 Despite its apparent usefulness, of the
more than 120,000 people who used Eclipse in May 2009,
only 12% used Open Resource.3

There are many barriers to developers’ use of tools,
including reliability, usability, and interoperability, yet one
barrier is common to all tools: the discoverability barrier.
The discoverability barrier is when a software developer is
not aware of a tool, either because she cannot find the tool to
solve her problem or because she is not aware that she has a
problem that the tool could solve. This barrier is significant
and growing, given the thousands of both built-in and plug-
in tools to modern development environments. Worsening
the problem, developers sometimes have to choose between
several alternative tools designed to solve the same prob-
lem [5].

My previous research suggests that one of the most effec-
tive ways software developers discover new tools is from
their peers [7]. Specifically, during peer interaction, one
developer learns from a peer during normal work activities.
Peer interaction can happen in one of two modes: peer ob-
servation or peer recommendation. During peer observation,
a developer observes another developer using a tool that
she did not know about. During peer recommendation, a
developer observes a tool not being used by a peer, and the
developer recommends that the peer use that tool.

Peer interaction is effective primarily because developers
who interact trust one another, where, for the purposes of
tool discovery, trust means that a developer can quickly
assess the relevance of a tool by comparing her own working
style with the peer’s working style [7]. Unfortunately, despite
its effectiveness, my research suggests that peer interaction
also occurs rarely, relative to other modes of discovery, such
as exploring an IDE’s user-interface. It is rare because it
generally does not occur when developers work in different
locations or during different times than their peers.

B. Continuous Social Screencasting

Continuous social screencasting is an idea that capitalizes
on the benefits of peer interaction, yet allows developers
to discover tools from remote and asynchronous peers. The
essence of the idea is that developers share automatically-
recorded screencasts that depict tools being used in real
development situations, encouraging developers to learn
about new tools from each other. Viewing such screencasts
is already common in video sites such as PeepCode,6 a
collection of professionally-produced screencasts for web
development.

To explain the idea of continuous social screencasting in
more detail, consider an example of three hypothetical soft-
ware developers, Archibald, Cuthbert, and Obediah. Suppose
they are using a system that implements continuous social

5http://blog.zvikico.com/2009/07/eclipse-35-hidden-treasures.html
6http://peepcode.com



screencasting, as shown in Figure 2. Let us focus on how
the system works from Cuthbert’s perspective, first looking
at how tools are recommended for Cuthbert, then looking at
how Cuthbert’s tool knowledge can be shared with others.

Recommendations for Cuthbert

Screen and Tool-Use Recording. On each developer’s ma-
chine, client software continually monitors and records two
streams of information: which tools the developers use at
what point in time and a screencast of the developer’s
work. This builds on recent work in the D-Macs system,
which was created to help designers avoid repetition by
capturing and sharing action sequences [4]. The continuous
monitoring aspect builds on life logging technologies in the
field of pervasive computing [1]. The screencast is captured
by taking screenshots at specific events in a developer’s
work, such as when she presses a button or clicks the mouse.
Both streams are stored locally on the developer’s machine
(Figure 2A). The tool-use stream is also stored on a central
server, along with tool-use streams from other developers
(Figure 2B), much like community knowledge repositories
have been used to store other types of software development
data, such as reusable components [9]. Each developer is
assigned a unique network identifier (cm1, cm2, and cm3),
enabling the developers to contact one another.

Generating Tool Recommendations. Cuthbert’s client then
asks for recommendations from the server. When the server
receives this request, it runs a recommender algorithm,
such as collaborative filtering or sequential data mining.
For example, in the same way Amazon.com recommends
“People who liked books X and Y also liked book Z”, for
developers who use tools X and Y, the tool can recommend
tool Z if the developer does not already use it. The algorithm
produces two different recommendation sets. The first is a
set of tools that Cuthbert does not know (call it UnKn),
but some other developers in the community do know. The
second is a set of tools that Cuthbert does know (call it Kn),
but some other developers in the community do not know.

Choosing User Recommendations. For each tool returned
that Cuthbert does not know (UnKn), the server includes the
network identifier for a user who does know that tool. The
returned network identifiers correspond to the system’s esti-
mate of which community members the requesting developer
will trust most, giving higher rankings to members (1) in the
same community sub-groups, such as developers in the same
team or company, (2) with a previous history of screencast
sharing, and (3) with higher community-provided reputation
scores. As a simple example, the server might return the
recommendations shown in Figure 2C.

Tool Use Episode Recommendation. Using UnKn, Cuth-
bert’s client retrieves a screencast on his behalf in three
steps:

1) Cuthbert’s client contacts one of the people in the

community to ask if he can see an example of them
using a tool Cuthbert does not know. For instance, the
client might ask if cm1 (Archibald) is willing to share
a subset of his screencast, which I call an episode, of
him using tool Tc (Figure 2D).

2) If Archibald consents, his client searches through his
tool-use stream, find an instance of him using Tc
recently, uses the timestamp in the tool-use stream as
an index into the video stream, and extracts an episode
contianing that tool being used.

3) Finally, Archibald’s client sents the episode of the tool
being used back to Cuthbert’s client. In viewing the
episode, Cuthbert sees the tool being used in a real
situation on a real codebase.

Recommendations from Cuthbert

The system can also enable developers to initiate sharing
their own screencasts. Based on Cuthbert’s Kn, Cuthbert’s
client can suggest that he share his expertise with the com-
munity, by contacting one of the people in the community
and ask to share an episode of tool use. For instance, he
might make this offer to cm3 (Obediah), sending Obediah
a recent episode of his own use of the tool (Figure 2E).
Obediah then learns about the tool from Cuthbert via the
episode. In addition to contacting specific people in the
community, if Cuthbert feels his knowledge of the tool may
be useful to others, he can share the episode with a wider
community by publishing it to the server. The server, acting
as a screencast repository, can then help Cuthbert share
the episode through websites such as Facebook, a blog, or
Vimeo (Figure 2F).

C. Applying the Principles

How does continuous social screencasting fare in terms
of the principles of social learning techniques?

Recording efficiency is good from the perspective of the
developer, as she does not have to do anything special
to make screencasts. Storing a continuous screencast may
take a significant amount of overhead in terms of long
term storage, but compression and the decreasing costs of
memory makes this increasingly feasible.

Learning efficiency from the perspective of the developer
who made the screencast may be a challenge, in that she
may want to authorize each new person who wishes to
learn to be able to view the screencast, so this cost to that
developer may be high. From the perspective of the learner,
efficiency is quite good in that she only has to watch a
short screencast to learn something new, with the benefit that
she can learn from non-collocated developers. However, if
developers are interrupted with tool recommendations, they
may find the system annoying and not use it again. Systems
that recommend tools, such as Microsoft Clippy,7 have

7http://en.wikipedia.org/wiki/Office Assistant



Server

Tb Tc Td Te Tj Tf Tj Ta Tk Td Tf Te Tc Tb Td Te Tn Tk

cm1
cm2
cm3

Tb Tc Td Te Tj Tf

Tj Ta Tk Td Tf Te

Tc Tb Td Te Tn Tk

Server

Archibald (cm1) Cuthbert (cm2) Obediah (cm3)

Facebook

Blog

Vimeo

Tb Tc Td Te Tj Tf Tj Ta Tk Td Tf Te Tc Tb Td Te Tn Tk

cm1
cm2
cm3

A

b

C

D E

F

Tb Tc Td Te Tj Tf

Tj Ta Tk Td Tf Te

Tc Tb Td Te Tn Tk

Show me Tc?

Okay!

Show you Ta?

Recommendatio
n?

UnKn={(Tc,cm1)}
Kn={(Ta,cm3)}

Figure 2. A system that illustrates continuous social screencasting, in two phases: data collection (top) and sharing (bottom).



faced significant criticism because they frequently interrupt
software users’ workflow to deliver a recommendation at the
wrong time.

The system could implement several mechanisms to make
sure that recommendations are not delivered at the wrong
time. First, the system could use negotiated interruption [3],
where the user is not forced to deal with an interruption
immediately. Second, the system could identify quiescent
periods (times when the developer is inactive) and displace-
ment activities [8] (activities undertaken to avoid unpleasant
work) as unobtrusive times to present recommendations.

Privacy preservation is perhaps the most significant re-
search challenge to continuous social screencasting. While
modern developers are used to sharing information such
as bug reports and source code, the technological jump to
sharing screencasts is proposition that developers may balk
at.

Specifically, developers may only want to share screen-
casts with some people, and may only want to share some
kinds of information in those screencasts. To help software
developers select who can and who cannot view their
screencasts, such a system would initially require developers
to either grant or deny individual sharing requests. Because
such explicit granting can be tedious, the system could
support user-defined community subgroups, so access can
be granted or denied to entire groups through blacklisting
and whitelisting.

To help software developers select what information is
shared in screencasts, the system could support blacklisting
and whitelisting of tools and tool groups. The system could
support manual and automatic obfuscation of source code
in the screencasts, so that a developer’s source code can
remain private. This is especially important in situations
where developers are working on closed-source code yet
they wish to share tool knowledge with outside developers.

Targeting in social screencasting could be excellent, de-
pending on the quality of the recommender system algo-
rithm. Additionally, it enables developers to discover tools
that they did not know they needed.

Trust likewise could be quite high as well, but this de-
pends on whether there is already someone that a developer
trusts in the community and whether she can build new trust
relationships with other community members.

Rationale is another challenge, in that automatically cre-
ated screencasts may not be detailed enough to help a viewer
understand why a tool is useful. However, the system could
implement several mechanisms to ensure that the screencasts
are sufficiently informative. First, the screencasts could not
only depict the tool in use, but also a few seconds of
context from before and after the use, because understanding
a tool’s cause and effect is important [7]. Second, the
screencasts could collect or automatically generate metadata,
such as which keystrokes invoke a tool, and links to helpful
resources.

The system could be augmented to provide efficient
feedback. Specifically, if the learner views a screencast
and starts using the tool, it seems reasonable to assume
that the she found that tool useful. Thus, future use of a
tool constitutes positive feedback on both the tool and the
video; lack of future use constitutes negative feedback. This
feedback could then be attached to the screencast (perhaps
the screencast was bad) and to the tool (perhaps the tool
was not useful), and could then be used in the recommender
system algorithm to make better recommendations.

Continuous social screencasting may be difficult to boot-
strap, since the recommendation algorithms rely on many
users to make good recommendations and also trust between
users to make recommendations stick.

The generality of this system can be viewed in two
different ways. In one way, the system can generally rec-
ommend any type of software engineering tool, regardless
of what that tool does. On the other hand, the system
helps developers only learn tools, but not necessarily how
to use them efficiently or how to use software development
practices outside of the integrated development environment.

IV. OTHER FUTURE TECHNIQUES FOR FACILITATING
SOCIAL LEARNING

What else does the future hold for social learning in soft-
ware engineering? Certainly we should expect the continua-
tion of “traditional” social learning in software engineering.
It’s difficult to imagine any technological replacement for
the richness that comes with watching a trusted peer work
or having her make recommendations based on watching you
work. Nonetheless, future developers will likely augment
traditional social learning with technology.

Two existing communities have begun to reveal what the
future of technology-mediated social learning looks like:
Stack Overflow and GitHub.8 Stack Overflow enables devel-
opers to learn from one another by asking explicit questions,
whereas GitHub allows developers to be notified when other
developers make open source changes of interest. In these
areas, the future likely holds improved search functionality
for relevant questions (that is, improved targeting), as well
as facilitating learning about other developers’ activities
beyond code changes (improved generality). However, com-
pared to social screencasting, these techniques will likely
retain relatively low recording efficiency.

What makes continuous social screencasting promising is
that software engineering activities are (a) recorded auto-
matically, and (b) shared automatically in a targeted way.
Beyond helping software developers discover tools, other
types of software engineering knowledge can be shared
using these two mechanisms.

In a straightforward extension of continuous social screen-
casting, it is easy to imagine that social screencasts could

8https://github.com/



be used not only to help developers learn how to use their
existing toolset more effectively. For example, some devel-
opers have repurposed compiler warnings in development
environments as convenient mechanisms for helping them
refactor; screencasts might be a good way to help them
share that technique with other developers. The immediate
challenge here is to determine what a tool usage technique
looks like, determine when a developer is and is not using it,
and determining how to measure effectiveness and the goal
of different techniques.

Another extension of the continuous screencasting idea is
to help developers learn not only about tools, but also about
language features or libraries. For example, if a developer
is doing casting when using collections, the system might
find examples of other people who have successfully used
generics in similar coding situations to avoid casts. Similarly,
if a developer is implementing a new piece of functionality
that is similar to that already provided by an existing
library, a system might find an example of someone using
that API for a similar programming task. In these cases,
screencasting may be an overly complicated medium for
sharing knowledge among developers – instead, simple code
snippets may work well. But like social screencasting for
tool discovery, privacy when sharing artifacts remains a
major challenge.

Technologically-mediated social learning could also help
software developers outside of the integrated development
environment. For example, social information could help
developers use their web browser to find documentation on
the internet that most relates to their current task and that has
helped software developers who were in similar situations.
Other software development tools like bug trackers could
help developers who are reporting bugs find bugs that are
similar to ones that they have fixed in the past.

Finally, many of the social learning techniques described
here are not unique to software development, but software
development is a particularly fertile area to study these
techniques. Indeed, any at least moderately complex piece
of software (like Microsoft Word or Adobe Illustrator) could
help users make better use of that software’s functionality
by connecting users with each other.

V. CONCLUSION

Social learning has been with us since the beginning, but
new advances in technology can help us leverage it like
never before. By building on the strengths of person-to-
person learning, technology can help software developers
learn from one another both in a very personal way but also
in ways that were not possible before now.

In this article I have outlined how continuous social
screencasting is a promising technique to help software
developers discover new tools, and also sketched how
technology-mediated social learning can more generally
influence the future of software engineering. Future advances

will move us towards techniques and systems that optimize
the principles of social learning discussed in this article.
Within the next decade, we can expect technological ad-
vances that enable developers (and others) to learn from
each other in totally new ways. These advances will take the
form both of refinements of existing technologies, like Stack
Overflow and continuous screencasting, and of completely
new innovations that help connect developers together.

Software engineering is chock-full of challenges that
make building and maintaining software difficult, yet we
can meet these challenges by combining what we naturally
do well with the enormous power that technology brings.

ACKNOWLEDGMENTS

For their help improving this paper, thanks to the anonymous
reviewers, as well as Jim Witschey and Kevin Lubick of
the Developer Liberation Front (http://research.csc.ncsu.edu/
dlf/). Thanks also to those who helped a prior version of
this paper, which described the social screencasting idea [6].
This material is based upon work supported by the National
Science Foundation under grant number 1252995.

BIOGRAPHY

Emerson is an assistant professor at North Carolina State
University. His research interests include the intersection
between human-computer interaction and software engineer-
ing. In 2010, completed a post-doc with Gail Murphy at
the University of British Columbia. He completed a Ph.D.
in Computer Science from Portland State University in
2009 under Andrew P. Black. He holds a B.S. from the
Evergreen State College. More on Emerson can be found
at: http://people.engr.ncsu.edu/ermurph3

CONTACT INFORMATION

Emerson Murphy-Hill
890 Oval Drive
Campus Box 8206
Raleigh, NC 27695-8206

919-513-0234

REFERENCES

[1] Mark Blum, Alex Pentland, and Gerhard Troster. Insense:
Interest-based life logging. Multimedia, IEEE, 13(4):40–48,
Oct.-Dec. 2006.

[2] Andrew J. Ko and Brad A. Myers. Designing the Whyline:
a debugging interface for asking questions about program
behavior. In Proceedings of CHI ’04, pages 151–158, 2004.

[3] Daniel C. Mcfarlane. Coordinating the interruption of people in
human-computer interaction. In IFIP Conference on Human-
Computer Interaction, pages 295–303, 1999.



[4] Jan Meskens, Kris Luyten, and Karin Coninx. D-macs:
building multi-device user interfaces by demonstrating, sharing
and replaying design actions. In Proceedings of UIST, pages
129–138, 2010.

[5] Gail C. Murphy, David Notkin, and Erica S.-C. Lan. An
empirical study of static call graph extractors. In Proceedings
of ICSE, pages 90–99, 1996.

[6] Emerson Murphy-Hill. Continuous social screencasting to
facilitate software tool discovery. In ICSE ’12: Proceedings
of the 34th International Conference on Software Engineering,
New Ideas and Emerging Results Track, 2012. To Appear.

[7] Emerson Murphy-Hill and Gail C. Murphy. Peer interaction
effectively, yet infrequently, enables programmers to discover
new tools. In Proceedings of CSCW, pages 405–414, 2011.

[8] Colin Potts and Lara Catledge. Collaborative conceptual de-
sign: A large software project case study. Computer Supported
Cooperative Work, 5:415–445, 1996.

[9] Yunwen Ye, Gerhard Fischer, and Brent Reeves. Integrating
active information delivery and reuse repository systems. In
Proceedings of FSE, pages 60–68, 2000.


