
4/29/2014

1

Evergreen

1
Angel and Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

SOS - Computer Graphics

Cushing Lecture05 - Spring 2014

1. Tool Tips – WebGL?

2. Geometry, Geometric objects, & Transformations
Vectors, Matrices

<BREAK>

3. Tomorrow’s Lab… Back to shaders….

4. Problem sets 5 and 6 …. For tomorrow (and/or next
Wednesday)

5. Recap Last Week’s Lab & Assignment
- Ray Tracing Code Review – Isaac or Dani?

- Comments about stretching the 3D Sierpinski?

6. The rest of the quarter….

Acknowledgements: Ed Angel, Jenny Orr, Ron Metoyer, Mike Bailey

Evergreen

2
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012.

Geometry

• Introduce the elements of geometry

– Scalars

– Vectors

– Points

• Develop mathematical operations among
them in a coordinate-free manner

• Define basic primitives

– Line segments

– Polygons

Evergreen

3
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012.

Basic Elements

• Geometry is the study of the relationships among objects in
an n-dimensional space

– In computer graphics, we are interested in objects
that exist in three dimensions

• Want a minimum set of primitives from which we can build
more sophisticated objects

• We will need three basic elements

– Scalars

– Vectors

– Points

Evergreen

4
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012.

Coordinate-Free Geometry

• When we learned simple geometry, most of us started with a
Cartesian approach

– Points were at locations in space p=(x,y,z)

– We derived results by algebraic manipulations involving these
coordinates

• This approach was nonphysical

– Physically, points exist regardless of the location of an arbitrary
coordinate system

– Most geometric results are independent of the coordinate
system

– Example Euclidean geometry: two triangles are identical if two
corresponding sides and the angle between them are identical

Evergreen

5
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012.

Scalars

• Need three basic elements in geometry

– Scalars, Vectors, Points

• Scalars can be defined as members of sets which
can be combined by two operations (addition and
multiplication) obeying some fundamental axioms
(associativity, commutativity, inverses)

• Examples include the real and complex number
systems under the ordinary rules with which we are
familiar

• Scalars alone have no geometric properties

Evergreen

6
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012.

Vectors

• Physical definition: a vector is a quantity with two
attributes
– Direction

– Magnitude

• Examples include
– Force

– Velocity

– Directed line segments
• Most important example for graphics

• Can map to other types

v

4/29/2014

2

Evergreen

7
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012.

Vector Operations

• Every vector has an inverse

– Same magnitude but points in opposite direction

• Every vector can be multiplied by a scalar

• There is a zero vector

– Zero magnitude, undefined orientation

• The sum of any two vectors is a vector

– Use head-to-tail axiom

v -v αv
v

u

w

Evergreen

8
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012.

Linear Vector Spaces

• Mathematical system for manipulating vectors

• Operations

– Scalar-vector multiplication u=αv

– Vector-vector addition: w=u+v

• Expressions such as

v=u+2w-3r

Make sense in a vector space

Evergreen

9
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012.

Vectors Lack Position

• These vectors are identical

– Same length and magnitude

• Vectors spaces insufficient for geometry

– Need points

Evergreen

10
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012.

Points

• Location in space

• Operations allowed between points and

vectors

– Point-point subtraction yields a vector

– Equivalent to point-vector addition

P = v + Q

v = P - Q

Evergreen

11
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012.

Affine Spaces

• Point + a vector space

• Operations
– Vector-vector addition

– Scalar-vector multiplication

– Point-vector addition

– Scalar-scalar operations

• For any point define

– 1 • P = P

– 0 • P = 0 (zero vector)

Evergreen

12
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012.

Lines

• Consider all points of the form

– P(α)=P0 + α d
– Set of all points that pass through P0 in the

direction of the vector d

4/29/2014

3

Evergreen

13
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012.

Parametric Form

• This form is known as the parametric form of the line
– More robust and general than other forms

– Extends to curves and surfaces

• Two-dimensional forms
– Explicit: y = mx +h

– Implicit: ax + by +c =0

– Parametric:

x(α) = αx0 + (1-α)x1
y(α) = αy0 + (1-α)y1

Evergreen

14
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012.

Rays and Line Segments

If α >= 0, then P(α) is the ray leaving P0 in the direction d

If we use two points to define v, then

P(α) = Q + αv
= Q + α (R-Q)

= αR + (1-α)Q

For 0<=α<=1 we get all the

points on the line segment

joining R and Q

Evergreen

15
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012.

Convexity

• An object is convex iff for any two points in the

object all points on the line segment between

these points are also in the object

P

Q Q

P

convex
not convex

Evergreen

16
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012.

Affine Sums

Consider the “sum” P = α1P1+α2P2+…..+αnPn

Can show by induction that this sum makes sense iff
α1+α2+…..αn=1

in which case we have the affine sum of the points
P1,P2,…..Pn

If, in addition, αi>=0, we have the convex hull of
P1,P2,…..Pn

Evergreen

17
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012.

Convex Hull

• Smallest convex object containing P1,P2,…..Pn

• Formed by “shrink wrapping” points

Evergreen

18
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012.

Curves and Surfaces

• Curves are one parameter entities of the form

P(α) where the function is nonlinear

• Surfaces are formed from two-parameter

functions P(α, β)
– Linear functions give planes and polygons

P(α)
P(α, β)

4/29/2014

4

Evergreen

19
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012.

Planes

• A plane can be defined by a point and two

vectors or by three points

P(α,β)=R+αu+βv P(α,β)=R+α(Q-R)+β(P-Q)

u

v

R

P

R

Q

Evergreen

20
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012.

Normals

• Every plane has a vector n normal (perpendicular,
orthogonal) to it

• From point-two vector form P(α,β)=R+αu+βv, we know
we can use the cross product to find

n = u × v

and the equivalent form

(P(α)-P) ⋅ n=0

u

v

P

Evergreen

BREAK

Evergreen

22
E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012

Representation

• New concepts : dimension and basis

• Introduce coordinate systems for

representing vectors, spaces, and frames

for representing affine spaces

• Discuss change of frames and bases

• Introduce homogeneous coordinates

Evergreen

23
E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012

Linear Independence

• A set of vectors v1, v2, …, vn is linearly

independent if

α1v1+α2v2+.. αnvn=0 iff α1=α2=…=0

• If a set of vectors is linearly independent, we

cannot represent one in terms of the others

• If a set of vectors is linearly dependent, at

least one can be written in terms of the others

Evergreen

24
E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012

Dimension

• In a vector space, the maximum number of linearly

independent vectors is fixed and is called the dimension

of the space

• In an n-dimensional space, any set of n linearly

independent vectors form a basis * for the space

• Given a basis v1, v2,…., vn, any vector v can be written as

v=α1v1+ α2v2 +….+αnvn

where the {αi} are unique

*See text, pp 129-133

4/29/2014

5

Evergreen

25
E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012

Representation

• Need a frame of reference to relate points and

objects to our physical world.

– For example, where is a point?

Can’t answer without a reference system

– World coordinates

– Camera coordinates

Evergreen

26
E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012

Coordinate Systems

• Consider a basis v1, v2,…., vn

• A vector is written v=α1v1+ α2v2 +….+αnvn

• The list of scalars {α1, α2,…. αn}is the representation

of v with respect to the given basis

• We can write the representation as a row or column

array of scalars

a=[α1 α2 …. αn]
T
=

α

α

α

n

2

1

.

Evergreen

27
E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012

Example

• v = 2v1+3v2-4v3
• a = [2 3 –4]T

• Note that this representation is with respect to a
particular basis

• For example, in OpenGL we start by representing
vectors using the object basis but later the
system needs a representation in terms of the
camera or eye basis

Evergreen

28
E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012

Coordinate Systems

• Which is correct?

• Both - vectors have no fixed location

v

v

Evergreen

29
E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012

Frames

• A coordinate system is insufficient to

represent points

• If we work in an affine space we can add a

single point, the origin, to the basis vectors to

form a frame

P0

v1
v2

v3

Evergreen

30
E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012

Representation in a Frame

• Frame determined by (P0, v1, v2, v3)

• Within this frame, every vector can be written as

v=α1v1+ α2v2 +….+αnvn

• Every point can be written as

P = P0 + β1v1+ β2v2 +….+βnvn

4/29/2014

6

Evergreen

31
E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012

Confusing Points and Vectors

Consider the point and the vector

P = P0 + β1v1+ β2v2 +….+βnvn

v = α1v1+ α2v2 +….+αnvn

They appear to have the similar representations

p=[β1 β2 β3] v=[α1 α2 α3]

which confuses the point with the vector

A vector has no position v

p

v

Vector can be placed anywhere

point: fixed

Evergreen

32
E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012

Homogeneous Coordinates

The homogeneous coordinates form for a three dimensional
point [x y z] is given as

p =[x’ y’ z’ w] T =[wx wy wz w] T

We return to a three dimensional point (for w≠0) by

x←x’/w

y←y’/w

z←z’/w

If w=0, the representation is that of a vector

Note : homogeneous coordinates replace points in three
dimensions by lines through the origin in four dimensions

For w=1, the representation of a point is [x y z 1]

What is w?

Evergreen

33
E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012

A Single Representation

If we define 0•P = 0 and 1•P =P then we can write

v=α1v1+ α2v2 +α3v3 = [α1 α2 α3 0] [v1 v2 v3 P0]
T

P = P0 + β1v1+ β2v2 +β3v3= [β1 β2 β3 1] [v1 v2 v3 P0]
T

Thus we obtain the four-dimensional homogeneous

coordinate representation

v = [α1 α2 α3 0]
T

p = [β1 β2 β3 1]
T

Evergreen

34
E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012

Homogeneous Coordinates and

Computer Graphics

• Homogeneous coordinates are key to all
computer graphics systems

– All standard transformations (rotation, translation,
scaling) can be implemented with matrix
multiplications using 4 x 4 matrices

– Hardware pipeline works with 4 dimensional
representations

– For orthographic viewing, we can maintain w=0
for vectors and w=1 for points

– For perspective we need a perspective division

Evergreen

35
E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012

Change of Coordinate Systems

• Consider two representations of the same

vector with respect to two different bases. The

representations are

v =α1v1+ α2v2 +α3v3 = [α1 α2 α3] [v1 v2 v3]
T

=β1u1+ β2u2 +β3u3 = [β1 β2 β3] [u1 u2 u3]
T

a=[α1 α2 α3]

b=[β1 β2 β3]

where

Evergreen

36
E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012

Representing second basis in terms

of first

Each of the basis vectors, u1,u2, u3, are vectors that can

be represented in terms of the first basis

u1 = γ11v1+γ12v2+γ13v3
u2 = γ21v1+γ22v2+γ23v3
u3 = γ31v1+γ32v2+γ33v3

v

v =α1v1+ α2v2 +α3v3 = [α1 α2 α3] [v1 v2 v3]
T

=β1u1+ β2u2 +β3u3 = [β1 β2 β3] [u1 u2 u3]
T

4/29/2014

7

Evergreen

37
E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012

Matrix Form

The coefficients define a 3 x 3 matrix

and the bases can be related by

see text for numerical examples

a=MTb

γγγ

γγγ

γγγ

3231

232221

131211

33

M =

Evergreen

38
E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012

Change of Frames

• We can apply a similar process in homogeneous
coordinates to the representations of both points and
vectors

• Any point or vector can be represented in either frame

e.g., we can represent Q0, u1, u2, u3 in terms of P0, v1, v2, v3

Consider two frames:

(P0, v1, v2, v3)

(Q0, u1, u2, u3) P0 v1

v2

v3

Q0

u1
u2

u3

Evergreen

39
E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012

Representing One Frame

in Terms of the Other

u1 = γ11v1+γ12v2+γ13v3
u2 = γ21v1+γ22v2+γ23v3
u3 = γ31v1+γ32v2+γ33v3
Q0 = γ41v1+γ42v2+γ43v3 +γ44P0

Extending what we did with change of bases

defining a 4 x 4 matrix

1γγγ

0γγγ

0γγγ

0γγγ

434241

333231

232221

131211

M =

Evergreen

40
E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012

Working with Representations

Within the two frames, any point or vector has a
representation of the same form

a=[α1 α2 α3 α4] in the first frame
b=[β1 β2 β3 β4] in the second frame

where α4 = β4 = 1 for points and α4 = β4 = 0 for vectors and

The matrix M is 4 x 4 and specifies an affine transformation in
homogeneous coordinates

a=MTb

Evergreen

41
E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012

Affine Transformations

• Every linear transformation is equivalent to a

change in frames

• Every affine transformation preserves lines

• However, an affine transformation has only 12

degrees of freedom because 4 of the elements

in the matrix are fixed and are a subset of all

possible 4 x 4 linear transformations

Evergreen

42
E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012

The World and Camera Frames

• When we work with representations, we work with n-

tuples or arrays of scalars

• Changes in frame are then defined by 4 x 4 matrices

• In OpenGL, the base frame that we start with is the

world frame

• Eventually we represent entities in the camera

frame by changing the world representation using

the model-view matrix

• Initially these frames are the same (M=I)

4/29/2014

8

Evergreen

43
E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012

Moving the Camera

If objects are on both sides of z=0, we must move camera

frame

−

1000

d100

0010

0001

M =

Evergreen

Time-Check….

Evergreen

45
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Transformations

• Introduce standard transformations

– Rotation

– Translation

– Scaling

– Shear

• Derive homogeneous coordinate
transformation matrices

• Learn to build arbitrary transformation
matrices from simple transformations

Evergreen

46
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

General Transformations

A transformation maps points to other points

and/or vectors to other vectors

Q=T(P)

v=T(u)

Evergreen

47
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Affine Transformations

• Line preserving

• Characteristic of many physically important
transformations

– Rigid body transformations: rotation, translation

– Scaling, shear

• In graphics : we need only transform
endpoints of line segments. Then, let the
implementation draw line segment between
the transformed endpoints.

Evergreen

48
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Pipeline Implementation

transformation rasterizer

u

v

u

v

T

T(u)

T(v)

T(u)
T(u)

T(v)

T(v)

vertices vertices pixels

frame

buffer

(from application program)

4/29/2014

9

Evergreen

49
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Notation

We will be working with both coordinate-free
representations of transformations and
representations within a particular frame

P, Q, R: points in an affine space

u, v, w: vectors in an affine space

α, β, γ: scalars

p, q, r: representations of points

- array of 4 scalars in homogeneous coordinates

u, v, w: representations of points

- array of 4 scalars in homogeneous coordinates

Evergreen

50
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Translation

• Move (translate, displace) a point to a new
location

• Displacement determined by a vector d

– Three degrees of freedom

– P’=P+d

P

P’

d

Evergreen

51
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

How many ways?

Although we can move a point to a new location in

infinite ways, when we move many points there is

usually only one way

object translation: every point displaced

by same vector

Evergreen

52
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Translation Using Representations

Using the homogeneous coordinate representation
in some frame

p=[x y z 1]T

p’=[x’ y’ z’ 1]T

d=[dx dy dz 0]T

Hence p’ = p + d or

x’=x+dx
y’=y+dy
z’=z+dz

note that this expression is in

four dimensions and expresses

point = vector + point

Evergreen

53
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Translation Matrix

We can also express translation using a 4 x 4 matrix T
in homogeneous coordinates

p’=Tp where

T = T(dx, dy, dz) =

This form is better for implementation because
all affine transformations can be expressed this way
and multiple transformations can be concatenated

1000

d100

d010

d001

z

y

x

Evergreen

54
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Rotation (2D)

Consider rotation about the origin by θ degrees

– radius stays the same, angle increases by θ

x’ = x cos θ –y sin θ
y’ = x sin θ + y cos θ

x = r cos φ
y = r sin φ

x = r cos (φ + θ)
y = r sin (φ + θ)

4/29/2014

10

Evergreen

55
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Rotation about the z axis

• Rotation about z axis in three dimensions leaves all

points with the same z

– Equivalent to rotation in two dimensions in planes

of constant z

– or in homogeneous coordinates

p’=Rz(θ)p

x’ = x cos θ – y sin θ
y’ = x sin θ + y cos θ
z’ =z

Evergreen

56
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Rotation Matrix

θθ

θ−θ

1000

0100

00 cossin

00sin cos

R = Rz(θ) =

Evergreen

57
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Rotation about x and y axes

• Same argument as for rotation about z axis

– For rotation about x axis, x is unchanged

– For rotation about y axis, y is unchanged

R = Rx(θ) =

R = Ry(θ) =

θθ

θθ

1000

0 cos sin0

0 sin- cos0

0001

θθ

θθ

1000

0 cos0 sin-

0010

0 sin0 cos

Evergreen

58
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Scaling

1000

000

000

000

z

y

x

s

s

s

S = S(sx, sy, sz) =

x’=sxx

y’=syx

z’=szx

p’=Sp

Expand or contract along each axis (fixed point of origin)

Evergreen

59
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Reflection

corresponds to negative scale factors

originalsx = -1 sy = 1

sx = -1 sy = -1 sx = 1 sy = -1

Evergreen

60
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Inverses

• Although we could compute inverse matrices by
general formulas, we can use simple geometric
observations

– Translation: T-1(dx, dy, dz) = T(-dx, -dy, -dz)

– Rotation: R -1(θ) = R(-θ)
• Holds for any rotation matrix

• Note that since cos(-θ) = cos(θ) and sin(-θ)=-sin(θ)
R -1(θ) = R T(θ)

– Scaling: S-1(sx, sy, sz) = S(1/sx, 1/sy, 1/sz)

4/29/2014

11

Evergreen

61
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Concatenation

• We can form arbitrary affine transformation matrices

by multiplying together rotation, translation, and

scaling matrices

• Because the same transformation is applied to many

vertices, the cost of forming a matrix M=ABCD is not

significant compared to the cost of computing Mp for

many vertices p

• The difficult part is how to form a desired

transformation from the specifications in the

application

Is this because order matters?

Evergreen

62
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Order of Transformations

• Note that matrix on the right is the first
applied

• Mathematically, the following are equivalent

p’ = ABCp = A(B(Cp))

• Note many references use column matrices to
represent points. In terms of column matrices

p’T = pTCTBTAT

Evergreen

63
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

General Rotation About the Origin

θ

x

z

y

v

A rotation by θ about an arbitrary axis

can be decomposed into the concatenation

of rotations about the x, y, and z axes

R(θ) = Rz(θz) Ry(θy) Rx(θx)

θx θy θz are called the Euler angles

Note that rotations do not commute

We can use rotations in another order but

with different angles

Evergreen

64
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Rotation About a Fixed Point

other than the Origin

Move fixed point to origin

Rotate

Move fixed point back

M = T(pf) R(θ) T(-pf)

Evergreen

65
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Instancing

• In modeling, we often start with a simple

object centered at the origin, oriented with

the axis, and at a standard size

• We apply an instance transformation to its

vertices to

Scale

Orient

Locate

Evergreen

66
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Shear

• Helpful to add one more basic transformation

• Equivalent to pulling faces in opposite directions

4/29/2014

12

Evergreen

67
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Shear Matrix

Consider simple shear along x axis

x’ = x + y cot θ
y’ = y

z’ = z

 θ

1000

0100

0010

00cot 1

H(θ) =

Evergreen

Time-Check….

Evergreen

69
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

OpenGL Transformations

• Learn how to carry out OpenGL

transformations

– Rotation

– Translation

– Scaling

• Introduce mat.h & vec.h transformations

– Model-view

– Projection

Evergreen

70
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Pre 3.1 OpenGL Matrices

• Matrices were part of the state

• Multiple types
– Model-View (GL_MODELVIEW)

– Projection (GL_PROJECTION)

– Texture (GL_TEXTURE)

– Color(GL_COLOR)

• Single set of functions for manipulation

• Select which to manipulate by
– glMatrixMode(GL_MODELVIEW);
– glMatrixMode(GL_PROJECTION);

Evergreen

71
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Current Transformation Matrix

(CTM)
• Conceptually there is a 4 x 4 homogeneous coordinate

matrix, the current transformation matrix (CTM) that is

part of the state and is applied to all vertices that pass

down the pipeline

• The CTM is defined in the user program and loaded

into a transformation unit

CTMvertices vertices

p p’=Cp
C

Evergreen

72
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

CTM operations

• The CTM can be altered either by loading a new CTM

or by postmutiplication

Load an identity matrix:C← I

Load an arbitrary matrix:C←M

Load a translation matrix:C← T

Load a rotation matrix:C← R

Load a scaling matrix:C← S

Postmultiply by an arbitrary matrix:C← CM

Postmultiply by a translation matrix:C← CT

Postmultiply by a rotation matrix:C← C R

Postmultiply by a scaling matrix:C← C S

4/29/2014

13

Evergreen

73
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Rotation about a Fixed Point

Start with identity matrix:C ← I

Move fixed point to origin: C← CT

Rotate: C← CR

Move fixed point back: C← CT -1

Result: C = TR T –1 which is backwards.

This result is a consequence of doing postmultiplications.

Let’s try again.

Evergreen

74
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Reversing the Order

We want C = T –1 R T
so we must do the operations in the following order

C← I
C← CT -1

C← CR
C← CT

Each operation corresponds to one function call in the program.

Note :
the last operation specified is the first executed in the program

Evergreen

75
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

CTM in OpenGL

• OpenGL had a model-view and a projection

matrix in the pipeline which were

concatenated together to form the CTM

• We will emulate this process

Evergreen

76
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Rotation, Translation, Scaling

mat4 r = Rotate(theta, vx, vy, vz)
m = m*r;

mat4 s = Scale(sx, sy, sz)
mat4 t = Transalate(dx, dy, dz);
m = m*s*t;

mat4 m = Identity();

Create an identity matrix:

Multiply on right by rotation matrix of theta in degrees

where (vx, vy, vz) define axis of rotation

Do same with translation and scaling:

Evergreen

77
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Example

• Rotation about z axis by 30 degrees with a fixed point

of (1.0, 2.0, 3.0)

• Remember that last matrix specified in the program is

the first applied

mat 4 m = Identity();
m = Translate(1.0, 2.0, 3.0)*
Rotate(30.0, 0.0, 0.0, 1.0)*
Translate(-1.0, -2.0, -3.0);

Evergreen

78
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Arbitrary Matrices

• Can load and multiply by matrices defined in
the application program

• Matrices are stored as one dimensional
array of 16 elements which are the
components of the desired 4 x 4 matrix
stored by columns

• OpenGL functions that have matrices as
parameters allow the application to send
the matrix or its transpose

4/29/2014

14

Evergreen

79
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Matrix Stacks

• In many situations we want to save

transformation matrices for use later

– Traversing hierarchical data structures (Chapter 8)

– Avoiding state changes when executing display lists

• Pre 3.1 OpenGL maintained stacks for each

type of matrix

• Easy to create the same functionality with a

simple stack class

Evergreen

80
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Reading Back State

• Can also access OpenGL variables (and other parts of

the state) by query functions

glGetIntegerv
glGetFloatv
glGetBooleanv
glGetDoublev
glIsEnabled

Evergreen

81
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Using Transformations

• Example: use idle function to rotate a cube and

mouse function to change direction of rotation

• Start with a program that draws a cube in a standard

way

– Centered at origin

– Sides aligned with axes

(Will discuss modeling next week)

Evergreen

82
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

main.c

void main(int argc, char **argv)
{

glutInit(&argc, argv);
glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB |

GLUT_DEPTH);
glutInitWindowSize(500, 500);
glutCreateWindow("colorcube");
glutReshapeFunc(myReshape);
glutDisplayFunc(display);
glutIdleFunc(spinCube);
glutMouseFunc(mouse);
glEnable(GL_DEPTH_TEST);
glutMainLoop();

}

Evergreen

83
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Idle and Mouse callbacks

void spinCube()
{

theta[axis] += 2.0;
if(theta[axis] > 360.0) theta[axis] -= 360.0;
glutPostRedisplay();

}

void mouse(int btn, int state, int x, int y)
{

if(btn==GLUT_LEFT_BUTTON && state == GLUT_DOWN)
axis = 0;

if(btn==GLUT_MIDDLE_BUTTON && state == GLUT_DOWN)
axis = 1;

if(btn==GLUT_RIGHT_BUTTON && state == GLUT_DOWN)
axis = 2;

}

Evergreen

84
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Display callback

void display()
{

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glUniform(…); //or glUniformMatrix
glDrawArrays(…);

glutSwapBuffers();
}

• can form a matrix in the application and

send it to the shader and

let shader do the rotation

or

• can send the angle and axis to the shader and

let the shader form the transformation matrix and

then do the rotation

More efficient than transforming data in application & resending the data

4/29/2014

15

Evergreen

85
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

the Model-view Matrix

• In OpenGL the model-view matrix is used to

– Position the camera

• Can be done by rotations and translations but
is often easier to use a LookAt function

– Build models of objects

• The projection matrix is used to define the view
volume and to select a camera lens

• Although these matrices are no longer part of the
OpenGL state, it is usually a good strategy to create
them in our own applications

Evergreen

86
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Smooth Rotation

• From a practical standpoint, we are often want to use
transformations to move and reorient an object
smoothly

– Problem: find a sequence of model-view matrices
M0,M1,…..,Mn so that when they are applied
successively to one or more objects we see a smooth
transition

• For orientating an object, we can use the fact that every
rotation corresponds to part of a great circle on a sphere

– Find the axis of rotation and angle

– Virtual trackball (see text)

Evergreen

87
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Incremental Rotation

• Consider the two approaches

– For a sequence of rotation matrices

R0,R1,…..,Rn , find the Euler angles for each

and use Ri= RizRiyRix
• Not very efficient

– Use the final positions to determine the axis and

angle of rotation, then increment only the angle

• Quaternions* can be more efficient than either

*p. 186

Evergreen

88
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Interfaces

• One of the major problems in interactive computer
graphics is how to use two-dimensional devices such as
a mouse to interface with three dimensional objects

• Example: how to form an instance matrix*?

• Some alternatives

– Virtual trackball

– 3D input devices such as the spaceball

– Use areas of the screen

• Distance from center controls angle, position, scale
depending on mouse button depressed

*p. 168-169?

Evergreen

89
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Lab/Asst 05: A Simple Program (?)

Generate a square on a solid background

