SOS - Computer Graphics <u>Cushing Lecture05 - Spring 20</u>14

1. Tool Tips - WebGL?

Evergreen

- 2. Geometry, Geometric objects, & Transformations Vectors, Matrices
- 3. Tomorrow's Lab... Back to shaders....
- 4. Problem sets 5 and 6 For tomorrow (and/or next Wednesday)
- 5. Recap Last Week's Lab & Assignment
- Ray Tracing Code Review Isaac or Dani?
 Comments about stretching the 3D Sierpinski?
- 6. The rest of the quarter....
- o. The fest of the quarter....

Acknowledgements: Ed Angel, Jenny Orr, Ron Metoyer, Mike Bailey Angel and Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Scalars

- Need three basic elements in geometry

 Scalars, Vectors, Points
- Scalars can be defined as members of sets which can be combined by two operations (addition and multiplication) obeying some fundamental axioms (associativity, commutativity, inverses)
- Examples include the real and complex number systems under the ordinary rules with which we are familiar
- Scalars alone have no geometric properties

5 E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012.

Basic Elements Geometry is the study of the relationships among objects in an n-dimensional space In computer graphics, we are interested in objects that exist in three dimensions Want a minimum set of primitives from which we can build more sophisticated objects We will need three basic elements Scalars Vectors Points

- Frame determined by (P_0, v_1, v_2, v_3)
- Within this frame, every vector can be written as $v = \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n$
- Every point can be written as $P = P_0 + \beta_1 v_1 + \beta_2 v_2 + \ldots + \beta_n v_n$
 - ³⁰ E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012

Affine Transformations

- Every linear transformation is equivalent to a change in frames
- Every affine transformation preserves lines
- However, an affine transformation has only 12 *degrees of freedom* because 4 of the elements in the matrix are fixed and are a subset of all possible 4 x 4 linear transformations

Evergreen	Translation Matrix
We can also expre in homogeneou	ess translation using a 4 x 4 matrix ${f T}$ us coordinates
\mathbf{p}' = $\mathbf{T}\mathbf{p}$ where $\mathbf{T} = \mathbf{T}(d_{x}, d_{y}, d_{z})$ =	$ \begin{bmatrix} 1 & 0 & 0 & d_x \\ 0 & 1 & 0 & d_y \\ 0 & 0 & 1 & d_z \\ 0 & 0 & 0 & 1 \end{bmatrix} $
all affine transfo and multiple tra	r for implementation because ormations can be expressed this way ansformations can be concatenated einer: Interactive Computer Graphics 6E © Addison-Wesley 2012

Concatenation

 We can form arbitrary affine transformation matrices by multiplying together rotation, translation, and scaling matrices

61

- Because the same transformation is applied to many vertices, the cost of forming a matrix M=ABCD is not significant compared to the cost of computing Mp for many vertices p
- The difficult part is how to form a desired transformation from the specifications in the application

Is this because order matters?

Rotation about a Fixed Point

 $\begin{array}{l} \mbox{Start with identity matrix: } C \leftarrow I \\ \mbox{Move fixed point to origin: } C \leftarrow CT \\ \mbox{Rotate: } C \leftarrow CR \\ \mbox{Move fixed point back: } C \leftarrow CT^{-1} \end{array}$

73

Result: $C = TR T^{-1}$ which is **backwards**.

This result is a consequence of doing postmultiplications.

Let's try again.

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Arbitrary Matrices

- Can load and multiply by matrices defined in the application program
- Matrices are stored as one dimensional array of 16 elements which are the components of the desired 4 x 4 matrix stored by <u>columns</u>
- OpenGL functions that have matrices as parameters allow the application to send the matrix or its transpose

Matrix Stacks

 In many situations we want to save transformation matrices for use later

- Traversing hierarchical data structures (Chapter 8)
- $-\operatorname{Avoiding}$ state changes when executing display lists
- Pre 3.1 OpenGL maintained stacks for each type of matrix
- Easy to create the same functionality with a simple stack class
 - E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

reen	main.c
id main	(int argc, char **argv)
glutI	<pre>nit(&argc, argv);</pre>
-	<pre>nitDisplayMode(GLUT_DOUBLE GLUT_RGB UT DEPTH);</pre>
glutI	nitWindowSize(500, 500);
glutC	reateWindow("colorcube");
glutR	eshapeFunc(myReshape);
glutD	isplayFunc(display);
glutI	dleFunc(spinCube);
alutM	ouseFunc (mouse) ;
-	ble(GL DEPTH TEST);
2	ainLoop();
y	

Evergreen

the Model-view Matrix

- In OpenGL the model-view matrix is used to — Position the camera
 - Can be done by rotations and translations <u>but</u> is often easier to use a LookAt function
 - Build models of objects
- The projection matrix is used to define the view volume and to select a camera lens
- Although these matrices are no longer part of the OpenGL state, it is usually a good strategy to create them in our own applications
 - 5 E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

88 E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

- Virtual trackball (see text)
- 86 E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

*p. 186

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

87