SOS - Computer Graphics
 Cushing Lecture05-Spring 2014

1. Tool Tips - WebGL?
2. Geometry, Geometric objects, \& Transformations
<BREAK>
3. Tomorrow's Lab... Back to shaders....
4. Problem sets 5 and 6 For tomorrow (and/or next Wednesday)
5. Recap Last Week's Lab \& Assignment

- Ray Tracing Code Review - Isaac or Dani?
- Comments about stretching the 3D Sierpinski?

6. The rest of the quarter....

Acknowledgements: Ed Angel, Jenny Orr, Ron Metoyer, Mike Bailey
Angel and Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Coordinate-Free Geometry

- When we learned simple geometry, most of us started with a Cartesian approach
- Points were at locations in space $\mathbf{p}=(x, y, z)$
- We derived results by algebraic manipulations involving these coordinates
- This approach was nonphysical
- Physically, points exist regardless of the location of an arbitrary coordinate system
- Most geometric results are independent of the coordinate system
- Example Euclidean geometry: two triangles are identical if two corresponding sides and the angle between them are identical

4 E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012.

Geometry

- Introduce the elements of geometry
- Scalars
- Vectors
- Points
- Develop mathematical operations among them in a coordinate-free manner
- Define basic primitives
- Line segments
- Polygons

2 E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012.

Scalars

- Need three basic elements in geometry - Scalars, Vectors, Points
- Scalars can be defined as members of sets which can be combined by two operations (addition and multiplication) obeying some fundamental axioms (associativity, commutativity, inverses)
- Examples include the real and complex number systems under the ordinary rules with which we are familiar
- Scalars alone have no geometric properties

5 E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012.

Basic Elements

- Geometry is the study of the relationships among objects in an n -dimensional space
- In computer graphics, we are interested in objects that exist in three dimensions
- Want a minimum set of primitives from which we can build more sophisticated objects
- We will need three basic elements

$$
\begin{aligned}
& \text { - Scalars } \\
& \text { - Vectors } \\
& \text { - Points }
\end{aligned}
$$

Vectors

- Physical definition: a vector is a quantity with two attributes
- Direction
- Magnitude
- Examples include
- Force
- Velocity
- Directed line segments
- Most important example for graphics
- Can map to other types

6 E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012.

零

－Every vector has an inverse
－Same magnitude but points in opposite direction
－Every vector can be multiplied by a scalar
－There is a zero vector
－Zero magnitude，undefined orientation
－The sum of any two vectors is a vector
－Use head－to－tail axiom

Points

－Location in space
－Operations allowed between points and vectors
－Point－point subtraction yields a vector
－Equivalent to point－vector addition

$v=\mathrm{P}-\mathrm{Q}$
$\mathrm{P}=v+\mathrm{Q}$
${ }^{10}$ E．Angel and D．Shreiner：Interactive Computer Graphics 6E © Addison－Wesley 2012.

Linear Vector Spaces

－Mathematical system for manipulating vectors
－Operations
－Scalar－vector multiplication $u=\alpha v$
－Vector－vector addition：$w=u+v$
－Expressions such as
$v=u+2 w-3 r$
Make sense in a vector space

Affine Spaces

－Point＋a vector space
－Operations
－Vector－vector addition
－Scalar－vector multiplication
－Point－vector addition
－Scalar－scalar operations
－For any point define
$-1 \cdot \mathrm{P}=\mathrm{P}$
$-0 \cdot P=\mathbf{0}$（zero vector）

8 E．Angel and D．Shreiner：Interactive Computer Graphics 6E © Addison－Wesley 2012.
11 E．Angel and D．Shreiner：Interactive Computer Graphics 6E © Addison－Wesley 2012.

雱

－This form in －More robust and general than other forms
－Extends to curves and surfaces
－Two－dimensional forms
－Explicit：$y=m x+h$
－Implicit： $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$
－Parametric：

$$
x(\alpha)=\alpha x_{0}+(1-\alpha) x_{1}
$$

13 E．Angel and D．Shreiner：Interactive Computer Graphics 6E © Addison－Wesley 2012.
Affine Sums
Consider the＂sum＂ $\mathrm{P}=\alpha_{1} \mathrm{P}_{1}+\alpha_{2} \mathrm{P}_{2}+\ldots . .+\alpha_{\mathrm{n}} \mathrm{P}_{\mathrm{n}}$

Can show by induction that this sum makes sense iff $\alpha_{1}+\alpha_{2}+\ldots . \alpha_{n}=1$
in which case we have the affine sum of the points $\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots . . \mathrm{P}_{\mathrm{n}}$

$$
y(\alpha)=\alpha y_{0}+(1-\alpha) y_{1}
$$

If，in addition，$\alpha_{i}>=0$ ，we have the convex hull of $\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots . \mathrm{P}_{\mathrm{n}}$

16 E．Angel and D．Shreiner：Interactive Computer Graphics $6 \mathrm{E} \subset$ Addison－Wesley 2012

Rays and Line Segments

If $\alpha>=0$ ，then $\mathrm{P}(\alpha)$ is the ray leaving P_{0} in the direction \mathbf{d}
If we use two points to define v ，then
$P(\alpha)=Q+\alpha v$

$$
\begin{aligned}
& =\mathrm{Q}+\alpha(\mathrm{R}-\mathrm{Q}) \\
& =\alpha \mathrm{R}+(1-\alpha) \mathrm{Q}
\end{aligned}
$$

For $0<=\alpha<=1$ we get all the points on the line segment joining R and Q

14 E．Angel and D．Shreiner：Interactive Computer Graphics 6E © Addison－Wesley 2012.

表者

Convex Hull
－Smallest convex object containing $\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots . . \mathrm{P}_{\mathrm{n}}$
－Formed by＂shrink wrapping＂points

Convexity

－An object is convex iff for any two points in the object all points on the line segment between these points are also in the object

convex

Curves and Surfaces

－Curves are one parameter entities of the form $P(\alpha)$ where the function is nonlinear
－Surfaces are formed from two－parameter functions $\mathrm{P}(\alpha, \beta)$
－Linear functions give planes and polygons

$P(\alpha)$

E．Angel and D．Shreiner：Interactive Computer Graphics 6E © Addison－Wesley 2012.
-
Planes

- A plane can be defined by a point and two vectors or by three points

R

$P(\alpha, \beta)=R+\alpha u+\beta v$
$\mathrm{P}(\alpha, \beta)=\mathrm{R}+\alpha(\mathrm{Q}-\mathrm{R})+\beta(\mathrm{P}-\mathrm{Q})$

19 E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Representation

- New concepts : dimension and basis
- Introduce coordinate systems for representing vectors, spaces, and frames for representing affine spaces
- Discuss change of frames and bases
- Introduce homogeneous coordinates

[^0]
Evergreen

Linear Independence

- A set of vectors $v_{1}, v_{2}, \ldots, v_{\mathrm{n}}$ is linearly independent if

$$
\alpha_{1} v_{1}+\alpha_{2} v_{2}+. . \alpha_{n} v_{n}=0 \text { iff } \alpha_{1}=\alpha_{2}=\ldots=0
$$

- If a set of vectors is linearly independent, we cannot represent one in terms of the others
- If a set of vectors is linearly dependent, at least one can be written in terms of the others
${ }^{23}$ E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012

Dimension

- In a vector space, the maximum number of linearly independent vectors is fixed and is called the dimension of the space
- In an n-dimensional space, any set of n linearly independent vectors form a basis * for the space
- Given a basis $v_{1}, v_{2}, \ldots ., v_{\mathrm{n}}$, any vector v can be written as $v=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\ldots+\alpha_{n} v_{n}$
where the $\left\{\alpha_{i}\right\}$ are unique
*See text, pp 129-133
${ }^{24}$ E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012
- Need a frame of reference to relate points and objects to our physical world.
- For example, where is a point?

Can't answer without a reference system

- World coordinates
- Camera coordinates

[^1]
Coordinate Systems

- Consider a basis $v_{1}, v_{2}, \ldots ., v_{\mathrm{n}}$
- A vector is written $v=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\ldots .+\alpha_{\mathrm{n}} v_{\mathrm{n}}$
- The list of scalars $\left\{\alpha_{1}, \alpha_{2}, \ldots . \alpha_{n}\right\}$ is the representation of v with respect to the given basis
- We can write the representation as a row or column array of scalars

$$
\mathbf{a}=\left[\begin{array}{llll}
\alpha_{1} & \alpha_{2} & \ldots & \alpha_{\mathrm{n}}
\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
. \\
\alpha_{\mathrm{n}}
\end{array}\right]
$$

${ }^{26}$ E. Angel and D. Shriener: Interactive Computer Graphics 6E \mathcal{O} Addison-Wesley 2012

Example

- $\mathrm{v}=2 \mathrm{v}_{1}+3 \mathrm{v}_{2}-4 \mathrm{v}_{3}$
- $\mathbf{a}=\left[\begin{array}{lll}2 & 3 & -4\end{array}\right]^{\mathrm{T}}$
- Note that this representation is with respect to a particular basis
- For example, in OpenGL we start by representing vectors using the object basis but later the system needs a representation in terms of the camera or eye basis

27 E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012

Frames

- A coordinate system is insufficient to represent points
- If we work in an affine space we can add a single point, the origin, to the basis vectors to form a frame

[^2]
Coordinate Systems

- Which is correct?

- Both - vectors have no fixed location
${ }^{28}$ E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012
- Frame determined by $\left(\mathrm{P}_{0}, \mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right)$
- Within this frame, every vector can be written as $v=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\ldots+\alpha_{\mathrm{n}} v_{\mathrm{n}}$
- Every point can be written as
$\mathrm{P}=\mathrm{P}_{0}+\beta_{1} v_{1}+\beta_{2} v_{2}+\ldots+\beta_{\mathrm{n}} v_{\mathrm{n}}$

Confusing Points and Vectors

Consider the point and the vector

$$
\begin{aligned}
& \mathrm{P}=\mathrm{P}_{0}+\beta_{1} v_{1}+\beta_{2} v_{2}+\ldots+\beta_{\mathrm{n}} v_{\mathrm{n}} \\
& v=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\ldots+\alpha_{\mathrm{n}} v_{\mathrm{n}}
\end{aligned}
$$

They appear to have the similar representations

Homogeneous Coordinates and Computer Graphics

- Homogeneous coordinates are key to all computer graphics systems
- All standard transformations (rotation, translation, scaling) can be implemented with matrix multiplications using 4×4 matrices
- Hardware pipeline works with 4 dimensional representations
- For orthographic viewing, we can maintain w=0 for vectors and $w=1$ for points
- For perspective we need a perspective division

34 E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012

Homogeneous Coordinates

The homogeneous coordinates form for a three dimensional point $[x y z]$ is given as
$\mathbf{p}=\left[x^{\prime} y^{\prime} z^{\prime} w\right]^{\mathrm{T}}=[w x \text { wy } w z w]^{\mathrm{T}}$
We return to a three dimensional point (for $w \neq 0$) by
$\mathrm{x} \leftarrow \mathrm{x}^{\prime} / \mathrm{w}$
$\mathrm{y} \leftarrow \mathrm{y}^{\prime} / \mathrm{w} \quad$ What is w ? $z \leftarrow z^{\prime} / w$
If $\mathrm{w}=0$, the representation is that of a vector

Note : homogeneous coordinates replace points in three dimensions by lines through the origin in four dimensions For $w=1$, the representation of a point is $[x y z 1]$

32 E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012

Change of Coordinate Systems

- Consider two representations of the same vector with respect to two different bases. The representations are

$$
\begin{aligned}
& \mathbf{a}=\left[\begin{array}{lll}
\alpha_{1} & \alpha_{2} & \alpha_{3}
\end{array}\right] \\
& \mathbf{b}=\left[\begin{array}{lll}
\beta_{1} & \beta_{2} & \beta_{3}
\end{array}\right]
\end{aligned}
$$

where

$$
\begin{aligned}
\mathrm{v} & =\alpha_{1} v_{1}+\alpha_{2} v_{2}+\alpha_{3} v_{3}=\left[\alpha_{1} \alpha_{2} \alpha_{3}\right]\left[v_{1} v_{2} v_{3}\right]^{\mathrm{T}} \\
& =\beta_{1} u_{1}+\beta_{2} u_{2}+\beta_{3} u_{3}=\left[\beta_{1} \beta_{2} \beta_{3}\right]\left[u_{1} u_{2} u_{3}\right]^{\mathrm{T}}
\end{aligned}
$$

35 E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012

A Single Representation

> If we define $0 \cdot \mathrm{P}=\mathbf{0}$ and $1 \cdot \mathrm{P}=\mathrm{P}$ then we can write
> $\mathrm{v}=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\alpha_{3} v_{3}=\left[\alpha_{1} \alpha_{2} \alpha_{3} 0\right]\left[v_{1} v_{2} v_{3} \mathrm{P}_{0}\right]^{\mathrm{T}}$
> $\mathrm{P}=\mathrm{P}_{0}+\beta_{1} v_{1}+\beta_{2} v_{2}+\beta_{3} v_{3}=\left[\beta_{1} \beta_{2} \beta_{3} 1\right]\left[v_{1} v_{2} v_{3} \mathrm{P}_{0}\right]^{\mathrm{T}}$

Thus we obtain the four-dimensional homogeneous coordinate representation
$\mathbf{v}=\left[\begin{array}{llll}\alpha_{1} & \alpha_{2} & \alpha_{3} & 0\end{array}\right]^{\mathrm{T}}$
$\mathbf{p}=\left[\beta_{1} \beta_{2} \beta_{3} 1\right]^{\mathrm{T}}$
${ }^{33}$ E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012

Representing second basis in terms of first

Each of the basis vectors, $u 1, u 2, u 3$, are vectors that can be represented in terms of the first basis

䓯

The coefficients define a 3×3 matrix

$$
\mathbf{M}=\left[\begin{array}{lll}
\gamma_{11} & \gamma_{12} & \gamma_{13} \\
\gamma_{21} & \gamma_{22} & \gamma_{23} \\
\gamma_{31} & \gamma_{32} & \gamma_{33}
\end{array}\right]
$$

and the bases can be related by

$$
\mathbf{a}=\mathbf{M}^{\mathrm{T}} \mathbf{b}
$$

Working with Representations

Within the two frames, any point or vector has a representation of the same form
$\mathbf{a}=\left[\begin{array}{lll}\alpha_{1} & \alpha_{2} & \alpha_{3} \\ \alpha_{4}\end{array}\right]$ in the first frame
$\mathbf{b}=\left[\begin{array}{lll}\beta_{1} & \beta_{2} & \beta_{3}\end{array} \beta_{4}\right]$ in the second frame
where $\alpha_{4}=\beta_{4}=1$ for points and $\alpha_{4}=\beta_{4}=0$ for vectors and

$$
\mathbf{a}=\mathbf{M}^{\mathrm{T}} \mathbf{b}
$$

The matrix \mathbf{M} is 4×4 and specifies an affine transformation in homogeneous coordinates

40 E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012

Change of Frames

- We can apply a similar process in homogeneous coordinates to the representations of both points and vectors

Consider two frames:
$\left(\mathrm{P}_{0}, \mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right)$
$\left(\mathrm{Q}_{0}, \mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}\right)$

- Any point or vector can be represented in either frame e.g., we can represent $\mathrm{Q}_{0}, \mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}$ in terms of $\mathrm{P}_{0}, \mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}$
${ }^{38}$ E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012

Affine Transformations

- Every linear transformation is equivalent to a change in frames
- Every affine transformation preserves lines
- However, an affine transformation has only 12 degrees of freedom because 4 of the elements in the matrix are fixed and are a subset of all possible 4×4 linear transformations

41 E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012

武

- When we work with representations, we work with ntuples or arrays of scalars
- Changes in frame are then defined by 4×4 matrices
- In OpenGL, the base frame that we start with is the world frame
- Eventually we represent entities in the camera frame by changing the world representation using the model-view matrix
- Initially these frames are the same ($\mathbf{M}=\mathbf{I}$)
${ }^{42}$ E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012

Evergreen

Affine Transformations

- Line preserving
- Characteristic of many physically important transformations
- Rigid body transformations: rotation, translation
- Scaling, shear
- In graphics : we need only transform endpoints of line segments. Then, let the implementation draw line segment between the transformed endpoints.

Transformations

- Introduce standard transformations
- Rotation
- Translation
- Scaling
- Shear
- Derive homogeneous coordinate transformation matrices
- Learn to build arbitrary transformation matrices from simple transformations

45 E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Notation

We will be working with both coordinate-free representations of transformations and representations within a particular frame
$\mathrm{P}, \mathrm{Q}, \mathrm{R}$: points in an affine space
$\mathrm{u}, \mathrm{v}, \mathrm{w}$: vectors in an affine space
α, β, γ : scalars
$\mathbf{p}, \mathbf{q}, \mathbf{r}$: representations of points

- array of 4 scalars in homogeneous coordinates
$\mathbf{u}, \mathbf{v}, \mathbf{w}$: representations of points - array of 4 scalars in homogeneous coordinates

49 E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Translation Using Representations

Using the homogeneous coordinate representation in some frame
$\mathbf{p}=\left[\begin{array}{llll}\mathrm{x} & \text { y } & \mathrm{z} & 1\end{array}\right]^{\mathrm{T}}$
$\mathbf{p}^{\prime}=\left[\begin{array}{ll}x^{\prime} & y^{\prime} \\ z^{\prime} & 1\end{array}\right]^{T}$
$\mathbf{d}=[\mathrm{dx} \text { dy dz } 0]^{\mathrm{T}}$
Hence \mathbf{p} ' $=\mathbf{p}+\mathbf{d}$ or

$\mathrm{x}^{\prime}=\mathrm{x}+\mathrm{d}_{\mathrm{x}}$	
$\mathrm{y}^{\prime}=\mathrm{y}+\mathrm{d}_{\mathrm{y}}$	note that this expression is in four dimensions and expresses point $=$ vector + point

Translation Matrix

We can also express translation using a 4×4 matrix \mathbf{T} in homogeneous coordinates

This form is better for implementation because all affine transformations can be expressed this way and multiple transformations can be concatenated
${ }^{53}$ E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

(等) Rotation about the z axis

- Rotation about z axis in three dimensions leaves all points with the same z
- Equivalent to rotation in two dimensions in planes of constant z
$\mathrm{x}^{\prime}=\mathrm{x} \cos \theta-\mathrm{y} \sin \theta$
$\mathrm{y}^{\prime}=\mathrm{x} \sin \theta+\mathrm{y} \cos \theta$
$\mathrm{z}^{\prime}=\mathrm{z}$
- or in homogeneous coordinates
$\mathbf{p}^{\prime}=\mathbf{R}_{\mathbf{z}}(\theta) \mathbf{p}$

55 E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Rotation about x and y axes

- Same argument as for rotation about z axis
- For rotation about x axis, x is unchanged
- For rotation about y axis, y is unchanged

$$
\mathbf{R}=\mathbf{R}_{\mathrm{x}}(\theta)=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \theta & -\sin \theta & 0 \\
0 & \sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
\mathbf{R}=\mathbf{R}_{\mathrm{y}}(\theta)=\left[\begin{array}{cccc}
\cos \theta & 0 & \sin \theta & 0 \\
0 & 1 & 0 & 0 \\
-\sin \theta & 0 & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

57 E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Inverses

- Although we could compute inverse matrices by general formulas, we can use simple geometric observations
- Translation: $\mathbf{T}^{-1}\left(\mathrm{~d}_{x}, \mathrm{~d}_{y^{\prime}}, \mathrm{d}_{z}\right)=\mathbf{T}\left(-\mathrm{d}_{\mathrm{x}^{\prime}},-\mathrm{d}_{y^{\prime}}-\mathrm{d}_{z}\right)$
- Rotation: $\mathbf{R}^{-1}(\theta)=\mathbf{R}(-\theta)$
- Holds for any rotation matrix
- Note that since $\cos (-\theta)=\cos (\theta)$ and $\sin (-\theta)=-\sin (\theta)$
$\mathbf{R}^{-1}(\theta)=\mathbf{R}^{\mathrm{T}}(\theta)$
-Scaling: $\mathbf{S}^{-1}\left(\mathrm{~s}_{\mathrm{x}}, \mathrm{s}_{\mathrm{y}}, \mathrm{s}_{\mathrm{z}}\right)=\mathbf{S}\left(1 / \mathrm{s}_{\mathrm{x}}, 1 / \mathrm{s}_{\mathrm{y}}, 1 / \mathrm{s}_{\mathrm{z}}\right)$
- We can form arbitrary affine transformation matrices by multiplying together rotation, translation, and scaling matrices
- Because the same transformation is applied to many vertices, the cost of forming a matrix $\mathbf{M}=\mathbf{A B C D}$ is not significant compared to the cost of computing Mp for many vertices \mathbf{p}
- The difficult part is how to form a desired transformation from the specifications in the application

Is this because order matters?
61 E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Rotation About a Fixed Point other than the Origin

Move fixed point to origin
Rotate
Move fixed point back
$\mathbf{M}=\mathbf{T}\left(p_{f}\right) \mathbf{R}(\theta) \mathbf{T}\left(-\mathrm{p}_{\mathrm{f}}\right)$

娄

Instancing

- In modeling, we often start with a simple object centered at the origin, oriented with the axis, and at a standard size
- We apply an instance transformation to its vertices to

Scale
Orient
Locate

General Rotation About the Origin

A rotation by θ about an arbitrary axis can be decomposed into the concatenation of rotations about the x, y, and z axes

$$
\mathbf{R}(\theta)=\mathbf{R}_{\mathrm{z}}\left(\theta_{\mathrm{z}}\right) \mathbf{R}_{\mathrm{y}}\left(\theta_{\mathrm{y}}\right) \mathbf{R}_{\mathrm{x}}\left(\theta_{\mathrm{x}}\right)
$$

$\theta_{x} \theta_{y} \theta_{z}$ are called the Euler angles
Note that rotations do not commute
We can use rotations in another order but with different angles

63 E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012
Shear

- Helpful to add one more basic transformation
- Equivalent to pulling faces in opposite directions

Pre 3．1 OpenGL Matrices

－Matrices were part of the state
－Multiple types
－Model－View（GL＿MODELVIEW）
－Projection（GL＿PROJECTION）
－Texture（GL＿TEXTURE）
－Color（GL＿COLOR）
－Single set of functions for manipulation
－Select which to manipulate by
－glMatrixMode（GL＿MODELVIEW）；
－glMatrixMode（GL＿PROJECTION）；

70 E．Angel and D．Shreiner：Interactive Computer Graphics 6E © Addison－Wesley 2012

OpenGL Transformations

－Learn how to carry out OpenGL transformations
－Rotation
－Translation
－Scaling
－Introduce mat．h \＆vec．h transformations
－Model－view
－Projection

69 E．Angel and D．Shreiner：Interactive Computer Graphics 6E © Addison－Wesley 2012

電
 Current Transformation Matrix （CTM）

－Conceptually there is a 4×4 homogeneous coordinate matrix，the current transformation matrix（CTM）that is part of the state and is applied to all vertices that pass down the pipeline
－The CTM is defined in the user program and loaded into a transformation unit

71 E．Angel and D．Shreiner：Interactive Computer Graphics 6E © Addison－Wesley 2012

$$
\text { E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley } 2012
$$

景变
 ergreen

CTM operations

－The CTM can be altered either by loading a new CTM or by postmutiplication

Load an identity matrix： $\mathbf{C} \leftarrow \mathbf{I}$
Load an arbitrary matrix： $\mathbf{C} \leftarrow \mathbf{M}$
Load a translation matrix： $\mathbf{C} \leftarrow \mathbf{T}$
Load a rotation matrix： $\mathbf{C} \leftarrow \mathbf{R}$
Load a scaling matrix： $\mathbf{C} \leftarrow \mathbf{S}$
Postmultiply by an arbitrary matrix： $\mathbf{C} \leftarrow \mathbf{C M}$
Postmultiply by a translation matrix： $\mathbf{C} \leftarrow \mathbf{C T}$
Postmultiply by a rotation matrix： $\mathbf{C} \leftarrow \mathbf{C} \mathbf{R}$
Postmultiply by a scaling matrix： $\mathbf{C} \leftarrow \mathbf{C} \mathbf{S}$
${ }^{72}$ E．Angel and D．Shreiner：Interactive Computer Graphics 6E © Addison－Westey 2012

Rotation about a Fixed Point

Start with identity matrix: $\mathbf{C} \leftarrow \mathbf{I}$
Move fixed point to origin: $\mathbf{C} \leftarrow \mathbf{C T}$
Rotate: $\mathbf{C} \leftarrow \mathbf{C R}$
Move fixed point back: $\mathbf{C} \leftarrow \mathbf{C T}^{-1}$

Result: $\mathbf{C}=\mathbf{T R} \mathbf{T}^{-1}$ which is backwards
This result is a consequence of doing postmultiplications.
Let's try again.
${ }^{73}$ E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Rotation, Translation, Scaling

Create an identity matrix:

```
mat4 m = Identity();
```

Multiply on right by rotation matrix of theta in degrees where ($\mathbf{v x}, \mathrm{vy}, \mathrm{vz}$) define axis of rotation
mat4 $r=$ Rotate (theta, $v x, ~ v y, ~ v z)$ m = m*r;

Do same with translation and scaling:
mat4 s = Scale(sx, sy, sz)
mat4 $\mathrm{t}=$ Transalate ($\mathrm{dx}, \mathrm{dy}, \mathrm{dz}$);
m = m*s*t;
76 E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

 Example

- Rotation about z axis by 30 degrees with a fixed point of (1.0, 2.0, 3.0)

```
mat 4 m = Identity();
m = Translate(1.0, 2.0, 3.0)*
    Rotate(30.0, 0.0, 0.0, 1.0)*
        Translate(-1.0, -2.0, -3.0);
```

- Remember that last matrix specified in the program is the first applied

77 E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

CTM in OpenGL

- OpenGL had a model-view and a projection matrix in the pipeline which were concatenated together to form the CTM
- We will emulate this process

Arbitrary Matrices

- Can load and multiply by matrices defined in the application program
- Matrices are stored as one dimensional array of 16 elements which are the components of the desired 4×4 matrix stored by columns
- OpenGL functions that have matrices as parameters allow the application to send the matrix or its transpose

78 E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

需

- In many situations we want to save transformation matrices for use later
- Traversing hierarchical data structures (Chapter 8)
- Avoiding state changes when executing display lists
- Pre 3.1 OpenGL maintained stacks for each type of matrix
- Easy to create the same functionality with a simple stack class
${ }^{79}$ E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

```
* =rem
main.c
void main(int argc, char **argv)
{
    glutInit(&argc, argv);
    glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB |
        GLUT_DEPTH);
    glutInitWindowSize(500, 500);
    glutCreateWindow("colorcube");
    glutReshapeFunc (myReshape);
    glutDisplayFunc(display);
    glutIdleFunc(spinCube);
    glutMouseFunc (mouse);
    glEnable(GL_DEPTH_TEST);
    glutMainLoop();
}
    82 E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012
```

```
0
{
    theta[axis] += 2.0;
    if( theta[axis] > 360.0 ) theta[axis] -= 360.0;
    glutPostRedisplay();
}
void mouse(int btn, int state, int x, int y)
    {
        if(btn==GLUT_LEFT_BUTTON && state == GLUT_DOWN)
            axis= = ;
            if(btn==GLUT_MIDDLE_BUTTON && state == GLUT_DOWN)
                axis = 1;
    if(btn==GLUT_RIGHT_BUTTON && state == GLUT_DOWN)
        axis= = 2;
    }
    83 E. Angel and D. Shreiner: Interactive Computer Graphics 6E O Addison-Wesley 2012
```


Idle and Mouse callbacks

```
void spinCube()
```

```
void spinCube()
```


Using Transformations

- Example: use idle function to rotate a cube and mouse function to change direction of rotation
- Start with a program that draws a cube in a standard way
- Centered at origin
- Sides aligned with axes
(Will discuss modeling next week)
${ }^{81}$ E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012
Display callback
- can form a matrix in the application and send it to the shader and
let shader do the rotation
$\stackrel{\text { or }}{ }$
can send the angle and axis to the shader and
let the shader form the transformation matrix and
then do the rotation
More efficient than transforming data in application \& resending the data
void display()
void display()
\{
glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glUniform((..); //or glUníformMatrix
glDrawArrays(...);
glutSwapBuffers()
\}
${ }^{84}$ E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

the Model-view Matrix

- In OpenGL the model-view matrix is used to
- Position the camera
- Can be done by rotations and translations but is often easier to use a LookAt function
- Build models of objects
- The projection matrix is used to define the view volume and to select a camera lens
- Although these matrices are no longer part of the OpenGL state, it is usually a good strategy to create them in our own applications
${ }^{85}$ E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Interfaces

- One of the major problems in interactive computer graphics is how to use two-dimensional devices such as a mouse to interface with three dimensional objects
- Example: how to form an instance matrix*?
- Some alternatives
- Virtual trackball
- 3D input devices such as the spaceball
- Use areas of the screen
- Distance from center controls angle, position, scale depending on mouse button depressed
${ }^{88}$ E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Smooth Rotation

- From a practical standpoint, we are often want to use transformations to move and reorient an object smoothly
- Problem: find a sequence of model-view matrices
$\mathbf{M}_{0}, \mathbf{M}_{1}, \ldots, \mathbf{M}_{\mathrm{n}}$ so that when they are applied successively to one or more objects we see a smooth transition
- For orientating an object, we can use the fact that every rotation corresponds to part of a great circle on a sphere
- Find the axis of rotation and angle
- Virtual trackball (see text)
${ }^{86}$ E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Lab/Asst 05: A Simple Program (?)
Generate a square on a solid background

Incremental Rotation

- Consider the two approaches
- For a sequence of rotation matrices $\mathbf{R}_{\mathbf{0}}, \mathbf{R}_{1}, \ldots ., \mathbf{R}_{\mathbf{n}}$, find the Euler angles for each and use $\mathbf{R}_{\mathrm{i}}=\mathbf{R}_{\mathrm{iz}} \mathbf{R}_{\mathrm{iy}} \mathbf{R}_{\mathrm{ix}}$
- Not very efficient
- Use the final positions to determine the axis and angle of rotation, then increment only the angle
- Quaternions* can be more efficient than either
*p. 186
${ }^{87}$ E. Angel and D. Shreiner: Interactive Computer Graphics 6 E \mathcal{O} Addison-Wesley 2012

[^0]: 22 E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012

[^1]: 25 E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012

[^2]: 29 E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012

