\qquad

Hand these in Lab Week 6, or in Class Week 7; just do them paper and pencil....

1) 3D Transforms: What is the 4×4 matrix transform (in homogeneous coordinates) for the 3D transformations below. Also give the inverse.
a) Scale by 5 in the z direction:

The transform:
The inverse:
b) A rotation of 10 degrees about the x axis:

The transform:
The inverse:
c) A projection onto the yz-plane.

The transform:
The inverse:
d) A translation by 10 along x and by -5 along y.

The transform:
The inverse:
e) A reflection through the xz-plane
2) Composition of 3D Transforms: What is the sequence of transformations needed to achieve the operations given below. Also, include the corresponding inverse. You do not need to write out the 4×4 matrices. Instead, make use of the syntax:

Scale: S(sx, $\left.\mathrm{S}_{\mathrm{y}}, \mathrm{s} z\right)$
Translation: $\mathrm{T}\left(\mathrm{t}_{\mathrm{x}}, \mathrm{ty}_{\mathrm{y}}, \mathrm{tz}_{\mathrm{z}}\right)$
Rotation: $\mathrm{Rx}_{\mathrm{x}}(\Theta), \mathrm{Ryy}_{\mathrm{y}}(\Theta), \mathrm{Rz}_{\mathrm{z}}(\Theta)$.
a) A rotation of 20 degrees about an axis that goes through the point (a, b, c) and is parallel to the y axis.

The transforms:

The inverse:
b) A scale by 5 (with fixed point at the origin) along the direction defined by the line from $(0,0,0)$ to $(-1,0,1)$.

The transforms:

The inverse:
c) A scale by 2 with fixed point $(2,3,4)$ and along the direction parallel to the x axis.

The transforms:

The inverse:
6) Scene Graphs: Below is a picture of a 3 segment robotic arm sitting on a base. Each segment is a cylinder of radius r and length $L i$, with $i=1,2, o r 3$.

The arm segments can be rotated as shown.

Draw the scene graph for the robotic arm (not including the black base).

Assume that you have access to a cylinder primitive that has radius 1 , height 1 , is centered at the origin, and aligned with the z axis.

Be sure to include all transformations. Scale transformations should be indicated as $\mathbf{S}\left(\mathbf{s}_{\mathrm{x}}, \mathbf{s}_{\mathrm{y}}, \mathbf{s}_{z}\right)$ where you fill in specific values for $\mathrm{s}_{\mathrm{x}}, \mathrm{s}_{\mathrm{s}}$, and sz_{z}. Similarly, translations and rotations should have the form $\mathbf{T}\left(\mathbf{t}_{\mathrm{x}}, \mathrm{t}_{\mathrm{y}}, \mathrm{t}_{\mathrm{z}}\right), \mathbf{R x}$ (angle), Ry(angle), and Rz(angle). Indicate push/pops where needed.

