Names: Answer McSheet, Dani Witherspoon

Lab 8 Shaders Workshop

WORK IN TEAMS OF TWO.

1a. Draw a line from the elements to their proper place in the OpenGL pipeline.

b. Draw a **star** next to the stages of the pipeline which are *programmable*. Draw a **square** next to those stages which are fixed-function. **Geometry Definition Primitive Assembly** Fragment Shader **Tessellation Control Shader Tessellation Primitive Generator Primitive Assembly Tessellation Evaluation Shader Geometry Shader** Rasterizer **Primitive Assembly** ? Vertex Shader ? Output

2. Annotate the following functions below according to where they are typically done:

V	Vertex transformations
FP	Viewport mapping
FP	Depth test
V	Normal transformation
F	Color computation
FP	Backface culling
FP	View volume culling
F	Texturing
V	Per-vertex lighting
F	Per-pixel lighting
V	Normal normalizations
F	Discarding pixels in fragments
V	Texture coordinates

- **V** if it is typically done in the vertex shader
- **F** if it is typically done in the fragment shader
- **FP** if it is still done by the fixed pipeline

3a. In one sentence, explain "in" and "out" variables in GLSL.

In and out variables are how shaders receive and pass the variables they will edit / pass on to the next shader in the pipeline.

b. In one sentence, explain what a "uniform" variable is in GLSL.

A uniform variable is a variable which will be used by at least one shader (but possibly many), which is sent from the application code to the shaders.

4. Fill in this Venn Diagram with **at least** six statements about the language features of C/C++ and GLSL:

