SOS Graphics Problems Week 5

Name(s) _SOLUTIONS
Hand these in Lab Week 5, or in Class Week 6; just do them paper and pencil....

1) (12 pts) Ray Tracing: Suppose you are given:

- $\quad \mathrm{VPN}=$ a vector that points in a direction opposite the way the camera looks
- VUP = the up direction vector
\boldsymbol{u} ? $=V V V \times n$? $V V V \times n$? How does one calculate the normalized eye coordinate basis vectors: u, n (see picture). Assume you are using a right handed coordinate system as shown

$$
\begin{aligned}
& \mathbf{u}=\text { VUP } \times \mathbf{n} / \| \text { VUP } \mathbf{X} \mathbf{n} \| \\
& \mathbf{v}=\mathbf{n} \times \mathbf{u} \\
& \mathbf{n}=\text { VPN } /\|V P N\|
\end{aligned}
$$

2) Phong Lighting. Suppose you are given the parameters as shown in the picture: L (unit vector in direction of light), R (unit vector in direction of reflected light), N (unit normal), and V (unit vector in direction of viewer).
You are also given the reflection coefficients k_{d} and k_{s}, the specularity n , the surface color Csurf (which is the same for both diffuse and specular), and light color CLight.

a) What is R in terms of L, N, and V ? $R=2(N \cdot L) N-L$
b) What is the color contribution of diffuse light to the pixel color at the intersection point?

$$
\text { Diffuse color }=k_{d} C_{\text {surf }} C_{\text {Light }}(N \cdot L)
$$

c) What is the color contribution of specular light to the pixel color at the intersection point?

$$
\text { specular color }=\mathrm{k}_{\mathrm{s}} \mathrm{C}_{\mathrm{Lg} \mathrm{ght}}(\mathrm{~V} \cdot \mathrm{R})^{\mathrm{n}}
$$

3) Rays
a) What is the parametric equation of a ray? Besides giving the formula, please explain in words what each of the terms in the formula represents. Include a picture.

Points P on a ray must satisfy: $P=P_{0}+t$ dir
Where
$\mathrm{P}_{0}=$ the starting point of the ray
dir $=$ vector pointing along the ray direction
$t=$ positive scalar parameter indicating the distance P is along the ray

b) Given an arbitrary point Q, explain (using words and equations) how you determine if Q is a point on the ray.

A point Q is on the ray if it satisfies the equation $Q=P_{0}+t$ dir for some positive value of t.
Writing it another way, we have

$$
\left(Q-P_{0}\right)-t d i r=0
$$

This is a vector equation which says that dir must be parallel to ($Q-P_{0}$).
There are several ways to check for this.
If we define $w=Q-P_{0}$, then we must satisfy:

$$
\left(w_{x}-t d i r_{x}, w_{y}-t d i r_{y}, w_{y}-t d i r_{y}\right)=(0,0,0)
$$

Or, there must exist a single positive t such that

$$
\mathrm{t}=\mathrm{w}_{\mathrm{x}} / \operatorname{dir}_{\mathrm{x}}=\mathrm{w}_{\mathrm{y}} / \operatorname{dir}=\mathrm{w}_{\mathrm{z}} / \mathrm{dir}_{z}
$$

If no such t exists, then Q is not on the ray.

