Hand these in Lab Week 6, or in Class Week 7; just do them paper and pencil....

- 1) **3D Transforms:** What is the 4x4 matrix transform (in homogeneous coordinates) for the 3D transformations below. *Also give the inverse*.
 - a) Scale by 5 in the z direction:

The transform:	The inverse:
1000	1 0 0 0
0100	0 1 0 0
0050	0 0 1/5 0
0001	0 0 0 1

b) A rotation of 10 degrees about the x axis:

The transform:				overse: ce 10 with	-10 to give	ə:
1 0 0 cos(10 0 sin(10 0 0	, ,	0 0 0 1	1 0 0	0 cos(10) -sin(10) 0	` ,	0 0 0 1

c) A projection onto the yz-plane.

The transform:	The inverse:
0000	no inverse exists.
0100	
0010	
0001	

d) A translation by 10 along x and by -5 along y.

The transform:	The inverse:
1 0 0 10	1 0 0 -10
010 -5	010 5
001 0	001 0
000 1	000 1

e) A reflection through the xz-plane

The transform:	The inverse:
1 000	1 000
0 -1 0 0	0 -1 0 0
0 010	0 010
0 001	0 001

2) **Composition of 3D Transforms:** What is the sequence of transformations needed to achieve the operations given below. Also, include the corresponding inverse. (fyi, we give the 4x4 matrices below – so you can see the correspondence), but you did not need to write out the 4x4 matrices; instead, you were to make use of the syntax (which is closer to what you do when writing code):

Scale: $S(s_X, s_Y, s_Z)$ Translation: (t_X, t_Y, t_Z)

Rotation: $R_X(\Theta)$, $R_Y(\Theta)$, $R_Z(\Theta)$.

a) A rotation of 20 degrees about an axis that goes through the point (a,b,c) and is parallel to the y axis.

The transforms:

	Rotate(r0, r(1/9pi), r0) * Translate(ta,tb,tc)		
	Rotate	Translate	
T(a,b,c) R _y (20) T(-a,-b,-c)	cos(1/9pin) 0 sin(1/9pin) 0 0 1 0 0 -sin(1/9pin) 0 cos(1/9pin) 0 0 0 0	1 00a 010 b 0 01 c 0 001	

The inverse:

	Rotate(r0, r(-1/9pi), r0) * Translate(t-a,t-b,t-c)		
	Rotate	Translate	
T(a,b,c) R _y (-20) T(-a,-b,-c)	cos(1/9pin) 0 -sin(1/9pin) 0 0 1 0 0 sin(1/9pin) 0 cos(1/9pin) 0 0 0 0 1	1 00-a 010-b 001-c 0001	

b) A scale by 5 (with fixed point at the origin) along the direction defined by the line from (0,0,0) to (-1, 0, 1).

The transforms:

R _y (45) S(5,1,1) R _y (-45) or	Scale(s(5/rt2), s1, s(5/rt2))	
R _y (-45) S(1,1,5) R _y (45)	Scale 5/rt2 0 0 0 0 1 0 0 0 0 5/rt2 0 0 0 0 1	Scale rt2/5 0 0 0 0 1 0 0 0 0 rt2/5 0 0 0 0 1

The inverse:

R _y (45) S(1/5,1,1) R _y (-45)	Scale(s(5/rt2), s1, s(5/rt2))		
or R _v (-45) S(1,1,1/5) R _v (45)	Scale 5/rt2 0 0 0 0 1 0 0 0 0 5/rt2 0 0 0 0 1	Scale rt2/5 0 0 0 0 1 0 0 0 0 rt2/5 0 0 0 0 1	

c) A scale by 2 with fixed point (2,3,4) and along the direction parallel to the x axis.

The transforms:

	S(s5,s1,s1) * T(t2,t3,t4)	
T(2,3,4) S(2,1,1) T(-2,-3,-4)	Scale 2 0 0 0 0 1 0 0	Translate 1 0 0 2 0 1 0 3
	0010	0 0 1 4 0 0 0 1

The inverse:

T(2,3,4) S(1/2,1,1) T(-2,-3,-4)	S(s.5,s1,s1) * T(t-2,t-3,t-4)	
	<u>Scale</u>	<u>Scale</u>
	.5 0 0 0	1 0 0 -2
	0 1 0 0	0 1 0 -3
	0010	0 0 1 -4 0 0 0 1

3) **Scene Graphs:** Below is a picture of a 3 segment robotic arm sitting on a base. Each segment is a cylinder of radius r and length L_i, with i=1,2,or 3. The arm segments can be rotated as shown.

Draw the <u>scene graph</u> for the robotic arm (not including the black base).

Assume that you have access to a cylinder primitive that has radius 1, height 1, is centered at the origin, and aligned with the z-axis.

Be sure to include all transformations. Scale transformations should be indicated as $S(s_X,s_y,s_Z)$ where you fill in specific values for s_X , s_Y , and s_Z . Similarly, translations and rotations should have the form $T(t_X,t_Y,t_Z)$, Rx(angle), Ry(angle), and Rz(angle).

Indicate push/pops where needed.

NOTE: the code for this can be found on the fileshare at: https://myfiles.evergreen.edu/academics/programs/sosoftware/Handouts/Graphics/Lectures/Lecture08/

