SOS Graphics Problems Week 6 -

Hand these in Lab Week 6, or in Class Week 7; just do them paper and pencil....

1) 3D Transforms: What is the 4×4 matrix transform (in homogeneous coordinates) for the 3D transformations below. Also give the inverse.
a) Scale by 5 in the z direction:

The transform:	The inverse:
1000	1000
0100	0100
0050	$001 / 50$
0001	000

b) A rotation of 10 degrees about the x axis:

The transform:				The inverse: replace 10 with -10 to give:			
1	0	0	0	1	0	0	0
0	$\cos (10)$	$-\sin (10)$	0	0	$\cos (10)$	$\sin (10)$	0
0	$\sin (10)$	$\cos (10)$	0		-sin(10)	$\cos (10)$	0
0	0	0	1	0	0	0	1

c) A projection onto the yz-plane.

The transform:	The inverse:
0000	no inverse exists.
0100	
0010	
0001	

d) A translation by 10 along x and by -5 along y.

The transform:	The inverse:
10010	100-10
$010-5$	010
0010	001
0001	0001

e) A reflection through the xz-plane

The transform:	The inverse:		
1	0	0	0
0	-1	0	0
0	0	1	0

2) Composition of 3D Transforms: What is the sequence of transformations needed to achieve the operations given below. Also, include the corresponding inverse. (fyi, we give the 4×4 matrices below - so you can see the correspondence), but you did not need to write out the 4×4 matrices; instead, you were to make use of the syntax (which is closer to what you do when writing code):

Scale: S(sx,sy,sz)
Translation: ($\mathrm{t}_{\mathrm{x}}, \mathrm{ty}_{\mathrm{y}}, \mathrm{tz}_{\mathrm{z}}$)
Rotation: $\mathrm{R}_{\mathrm{x}}(\Theta), \mathrm{Ry}_{\mathrm{y}}(\Theta), \mathrm{R}_{\mathrm{z}}(\Theta)$.
a) A rotation of 20 degrees about an axis that goes through the point (a, b, c) and is parallel to the y axis.

The transforms:

	Rotate(r0, r(1/9pi), r0) * Translate(ta,tb,tc)	
$T(a, b, c) R_{y}(20) T(-a,-b,-c)$	Rotate	Translate
	$\cos (1 / 9$ pin $)$ $0 \sin (1 / 9$ pin $)$ 0 0 10 0 $-\sin (1 / 9$ pin $)$ $0 \cos (1 / 9$ pin $)$ 0 0 00 1	$\begin{array}{llll} 1 & 0 & 0 & a \\ 0 & 1 & 0 & b \\ 0 & 0 & 1 & c \\ 0 & 0 & 0 & 1 \end{array}$

The inverse:

	Rotate(r0, r(-1/9pi), r0) * Translate(t-a,t-b,t-c)	
$T(a, b, c) R_{y}(-20) T(-a,-b,-c)$	Rotate	Translate
	$\cos (1 / 9 \mathrm{pin})$ 0 $-\sin (1 / 9 \mathrm{pin})$ 0 0 1 0 0 $\sin (1 / 9 \mathrm{pin})$ 0 $\cos (1 / 9 \mathrm{pin})$ 0 0 0 0 1	$\begin{array}{llll} 1 & 0 & 0 & -a \\ 0 & 1 & 0 & -b \\ 0 & 0 & 1 & -c \\ 0 & 0 & 0 & 1 \end{array}$

b) A scale by 5 (with fixed point at the origin) along the direction defined by the line from $(0,0,0)$ to $(-1,0,1)$.

The transforms:

The inverse:

c) A scale by 2 with fixed point $(2,3,4)$ and along the direction parallel to the x axis.

The transforms:

$\mathrm{T}(2,3,4) \mathrm{S}(2,1,1) \mathrm{T}(-2,-3,-4)$	$\mathrm{S}(\mathrm{s} 5, \mathrm{~s} 1, \mathrm{~s} 1)^{*} \mathrm{~T}(\mathrm{t} 2, \mathrm{t} 3, \mathrm{t} 4)$	
	Scale	Translate
	2000 0100	1002 0103
	$\begin{array}{llll} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}$	$\begin{array}{lll} 0 & 0 & 1 \\ 0 & 1 \end{array}$

The inverse:

$\mathrm{T}(2,3,4) \mathrm{S}(1 / 2,1,1) \mathrm{T}(-2,-3,-4)$	$\mathrm{S}(\mathrm{s} .5, \mathrm{~s} 1, \mathrm{~s} 1)^{*} \mathrm{~T}(\mathrm{t}-2, \mathrm{t}-3, \mathrm{t}-4)$	
	Scale	Scale
	. 5000	100-2
	0100	010-3
	$\begin{array}{lllll}0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}$	$\begin{array}{llll}0 & 0 & 1 & -4 \\ 0 & 0 & 0 & 1\end{array}$

3) Scene Graphs: Below is a picture of a 3 segment robotic arm sitting on a base. Each segment is a cylinder of radius r and length $L i$, with $i=1,2$,or 3 . The arm segments can be rotated as shown.

Draw the scene graph for the robotic arm (not including the black base).

Assume that you have access to a cylinder primitive that has radius 1 , height 1 , is centered at the origin, and aligned with the z-axis.

Be sure to include all transformations. Scale transformations should be indicated as $\mathbf{S}\left(\mathbf{s}_{x}, \mathbf{s}_{\mathbf{y}}, \mathbf{s}_{z}\right)$ where you fill in specific values for s_{x}, s_{y}, and s_{z}. Similarly, translations and rotations should have the form $\mathbf{T}\left(\mathrm{t}_{\mathrm{x}}, \mathrm{t}_{\mathrm{y}}, \mathrm{t}_{\mathrm{z}}\right)$, Rx(angle), Ry(angle), and Rz(angle).
Indicate push/pops where needed.
NOTE: the code for this can be found on the fileshare at: https://myfiles.evergreen.edu/academics/programs/sosoftware/Hando uts/Graphics/Lectures/Lecture08/

,
Segment 3

