<form><form><form><form><form><form></form></form></form></form></form></form>	Assignment Previewer http://www.webassign.net/v4cgikchowdary@evergr	reen/assignments/pre Assignment Prev	viewer http://ww	ww.webassign.net/v4cgikchowdary@evergreen/assignments/pre
		4.	There are two important isotopes of uranium $-$ ²³⁵ U and ²³⁸ U; these is different atomic masses. Only ²³⁵ U is very useful in nuclear reactors. Or diffusion) is based on the different average speeds $v_{\rm rms}$ of uranium hexa	ptopes are nearly identical chemically but have ne of the techniques for separating them (gas
(a) At what temperature do the Pahrenhet and Calcius scales have the same numerical value? (b) At what temperature do the Fahrenhet and Kelvin scales have the same numerical value? (c) At what temperature do the Fahrenhet and Kelvin scales have the same numerical value? (c) At what temperature do the Fahrenhet and Kelvin scales have the same numerical value? (c) At what temperature do the Fahrenhet and Kelvin scales have the same numerical value? (c) At what temperature do the Fahrenhet and Kelvin scales have the same numerical value? (c) At what temperature do the Fahrenhet and Kelvin scales have the same numerical value? (c) At what temperature do the Fahrenhet and Kelvin scales have the same numerical value? (c) At what temperature do the Fahrenhet and Kelvin scales have the same numerical value? (c) At what temperature do the Fahrenhet and Kelvin scales have the same numerical value? (c) At what temperature do the Fahrenhet and Kelvin scales have the same numerical value? (c) At what temperature do the Fahrenhet and Kelvin scales have the same numerical value? (c) At what temperature do the Fahrenhet and Kelvin scales have the same numerical value? (c) At what temperature do the Fahrenhet and Kelvin scales have the same numerical value? (c) At what temperature do the Fahrenhet and Kelvin scales have the same numerical value? (c) At what temperature do the Fahrenhet and Kelvin scales have the same numerical value? (c) At what temperature do the Fahrenhet and Kelvin scales have the same numerical value? (c) At what temperature do the Fahrenhet and Kelvin scales have the same numerical value? (c) At what temperature do the Fahrenhet and Kelvin scales have the	To conserve energy, a certain room's temperature is kept at 68.0°F in the winter and 78.5°F in the summer. What an temperatures on the Celsius scale? in the winter 20 °C in the summer 25.8 °C Supporting Materials		(a) The molecular masses for ²³⁵ UF ₆ and ²³⁸ UF ₆ are 349.0 g/m their average speeds? (Enter your answer to at least 4 decimal $\frac{v_{235}}{v_{238}} = $ [200] 1.00429 (b) At what temperature would their average speeds differ by 1 2090 K Supporting Materials	places.)
Physical Constants 6. Question Details OSColPhys1 13.P.049.Tutorial.WA. [2611976] There are 1.5 times as many molecules as Avogadro's number at a temperature of 1.5°C inside a sealed cube with dimensions 2.8 cm x 2.8 cm x 2.8 cm. X2.8 cm. X2.8 cm. X2.8 cm. How much force does the gas exert on one of the walls of the cube? Image: 1.22e+05 N Supporting Materials	 (a) At what temperature do the Fahrenheit and Celsius scales have the same numerical value? (b) At what temperature do the Fahrenheit and Kelvin scales have the same numerical value? Supporting Materials Physical Constants 3. Question Details OSCOIPHys1 13.P.042.WA. [26] (a) What is the average kinetic energy of hydrogen atoms on the 5500°C surface of the Sun? (b) What is the average kinetic energy of helium atoms in a region of the solar corona where the temperature is 1.90 × 10 ⁶ K? (b) What is the average kinetic energy of helium atoms in a region of the solar corona where the temperature is 1.90 × 10 ⁶ K?	5.	A cylinder has a piston at one end that can be moved in or out to chang with a valve. Initially the cylinder contains 2.65 mol of an ideal gas. The gas to one-third its initial value without causing any change in temperat how many moles of gas need to be released through the valve?	e the volume of gas inside. The other end is fitted piston is now pushed in to decrease the volume of
1 of 7 8/23/2014 9:58 AM 2 of 7 8/23/2014 9:58 AM	Physical Constants		There are 1.5 times as many molecules as Avogadro's number at a tem dimensions 2.8 cm x 2.8 cm x 2.8 cm. How much force does the gas ex [1.22+05] N [2007] [2007] N Supporting Materials	perature of 1.5°C inside a sealed cube with ert on one of the walls of the cube?

Assignment Previewer		http://www.webassign.net/v4cgikchowdary@evergreen/assign	ments/pre	Assignment Previ	ewer	http://www.webassign.net/v4cgikchowdary@evergreen/assignments/pre
8. Ques	(b) Now the volume of the gas is also allowed to chather pressure and the volume are quadrupled. (b) Now the volume are quadrupled. (c) 24510 °C Supporting Materials Physical Constants stion Details	OSColPhys1 13.P.022.WA. [2611634] . °C, and its pressure is 7.80 atm. t constant volume so the pressure is five times its initial value? inge. Determine the final temperature if the gas is heated until OSColPhys1 13.P.028.WA. [2611776] . a pressure of 2.20 × 10 ⁷ N/m ² and a temperature of 25.0°C. Its				
valv and	 ve leaks after the cylinder is dropped. The cylinder is coold pressure so that it can be safely repaired. (a) What is the final pressure in the tank, assuming there is no phase change? 1.44e+07 N/m² (b) What is the final pressure if one-tenth of the gas 1.29e+07 N/m² 	ed to dry ice temperatures (-78.5°C), to reduce the leak rate a negligible amount of gas leaks while being cooled and that escapes? reduce the pressure to 1.00 atm (assuming the gas does not			Physical Constants Question Details A 0.470-kg block of a pure material is here specific heat.	OSColPhys1 14.P.003.WA. [2611822]
(a) Givi (b) pre:	Sition Details (1) The temperature of a gas increases from 23.5 K to 69.5 re your answer as a multiple of the initial pressure P_1 . (2) The temperature of a gas increases from 23.5 °C to 69.5 essure? Give your answer as a multiple of the initial press (2) 1.16 P_1 (3) Supporting Materials (3) Physical Constants (4)			12.	forth for a total of 28 rubs a distance of 7	OSCOIPhys1 14.R005.WA. [2611428] . by converting work into thermal energy. If a woman rubs her hands back and 50 cm each and with a frictional force averaging 61.3 N, what is the temperature nly 0.100 kg, mostly in the palms and fingers. The specific heat of the tissue is
3 of 7		8/23/201	14 9:58 AM	4 of 7		8/23/2014 9:58 AM

Assignment Previewer	http://www.webassign.net/v4cgikchowdary@evergreen/assignments/pre	Assignment Previewer		http://www.webassign.n	et/v4cgikchowdary@evergreen/assignments/pre
	http://www.webussigin.neb/regikenowdu/@oregieen/ussiginnen/s/pre	rissignment i reviewer		http://www.webussigii.ik	a regitent waa y gevergreen assignments pre
 initial speed is 1.6 m/s. How much does the block's temp internal energy? The specific heat of iron is 452 J/(kg • % 0.00204 °C Supporting Materials Physical Constants 14. Question Details You pour 160 g hot coffee at 78.7°C and some cold crear 22.0°C. The cup, coffee, and cream reach an equilibrium of 0.2604 kcal/(kg • °C) and the specific heat of both the surroundings or gained from the surroundings, how much 	OSCOIPhys1 14.P.011.WA. [2611448] n at 7.50°C to a 115-g cup that is initially at a temperature of temperature of 63.0°C. The material of the cup has a specific heat coffee and cream is 1.00 kcal/(kg · C). If no heat is lost to the	Th	estion Details the number of kilocalories in food is determined by cal tat transfer is measured. (a) How many kilocalories per gram are there i 0.530 kg of water held in a 0.134-kg aluminum capacity of water is 1.00 kcal/(kg · °C) and the block cal/ kcal/g (b) The labeling information on a package of per Compare your answer in part (a) to this labeling be consistent if they are within 0.5 kcal/g of ea be consistent if they are within 0.5 kcal/g of ea No Supporting Materials	in a 5.00-g peanut, if the energy i m cup, causing a 54.9°C temperat e specific heat capacity of aluminu peanuts states that 1 serving is eq ng information. Are the two values	from burning it is transferred to ure increase? (The specific heat um is 0.215 kcal/(kg · °C).) ual to 28 g and 170 Calories.
order to consolidate and save space, you mix the two liqu	OSCOIPhys1 14.P.012.WA. [2611747] tainer has 124.0 g at 7_1 °C and the second has 25 g at 21°C. In Jids into one container and find that the two portions have now the initial temperature of the liquid in the first container?	Ar	Physical Constants estion Details n ice bag containing 0°C ice is much more effective in the specific heat capacity of water is 1.00 kcal/(kg · °C (a) How much heat in kcal is required to raise the sequired to raise the sequired to first melt 0.3 (b) How much heat is required to first melt 0.3 (b) How much heat is required to first melt 0.3 Supporting Materials Physical Constants	PC), and its latent heat of fusion is the temperature of 0.330 kg of w	79.8 kcal/kg. ater from 0°C to 27.0°C?
		Assignment E Name (AID): Submissions Category: H Code: Locked: No Author: Cho	HW11 - due 6 pm Day 21 (Mon. Aug. 25) (6183276) Allowed: 5 omework wdary, Krishna (chowdark@evergreen.edu) Aug 23, 2014 09:57 AM PDT		
5 of 7	8/23/2014 9:58 AM	6 of 7			8/23/2014 9:58 AM