Matter and Motion Series Review Worksheet Solutions

1. A series is defined recursively as follows
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where a; = 1. Find the limit of a,, as n — oo.
Assume nhrgo a, = x then nhr{)lo an+1 = x also. Substituting these results into the above
equation yields
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Since a,, > 0 for all n then nh—>nc}o a, = V2

2. Determine whether the following series converge or diverge
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Now, since 0 < 1 the series converges by the ratio test.
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Application of the ratio test for this series gives nh_)Igo a, = 1 so the ratio test fails. Try
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the integral test. a, = so test the integral / (17 dx for convergence
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The integral converges so the series converges.




3. Find the interval of convergence of the following power series
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a, = 2"x". For convergence apply the ratio test
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So for convergence |z| < % = —% <x< % Now test the end points. When x = %,
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so the series diverges. When z = —% ,
ian:1—1+1—1+1—1~~

so the series diverges also. So the interval of convergence is —% <z < %

4. Find the first three non zero terms of the Maclaurin series for the function f(z) = e’

There are two methods. First the long method
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So the Maclaurin series is f(z) =1—a? + fa* + .- -.

The short method makes use of the Maclaurin series for e* which is
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Then it follows that
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