IS NATURE PROBABLE OR CAPRICIOUS?

Richard C. Lewontin

Probably the most important event
in the history of modern science, al-
though it is not always recognized as
such. was the publication in 1637 of
Descartes Discourses, especially of Part
v. wherein he described the metaphor
of the animal as a machine. Soon to
pe followed by La Méttrie’s “homme
machine,” the “béte machine” of Des-
cartes was the foundation of a world
view that has colored science ever since
and truly makes modern knowledge a
Cartesian system. The concept of the
universe as a machine is really the no-
tion that for every cause there is an
cffect, that the universe is deterministic.
put in another way, it asserts that given
the state of all the relevant variables
- at some time t. it is possible to pre-
dict exactly what the state of the uni-
verse will be at some future time £ that
is. the universe can be described as a
solution to a large set of simultaneous
differential equations. This world view
is responsible for vast progress in
physics. chemistry, and physiological
biology. and is, moreover, the starting
point for work in any new science such
as psychology. We always begin with
the hope and assumption that rigorous
laws leading to exact predictions are
possible.

It is ironic that at the time of Des-
cartes death in 1650 there was being
laid the foundation of an alternate
world view, one that would not have its
full impact for more than 200 years.
In the De alea geometriae, Pascal.
Fermat. and Huyghens created an en-
tirely new metaphor. that of the uni-
verse as a gaming table in which the
cast of dice determined the outcome.
The idea that human affairs were the
outcome of chance events was, of
course, a very old one, and Caesar at
the Rubicon was not the first to say
“Alea jacta est” at a critical moment.
Nevertheless, we owe the explicit sys-
temization of chance as an exact doc-
trine to Pascal and Fermat and its rig-
orous mathematization to Bernoulli,and
much later to Laplace.

So great was the influence of Car-
tesianism on science, however, that
even the founders of the probability

theory were not willing to accept its
antideterministic implications. Laplace
in his Essai philosophique sur les prob-
abilitiés reconciled chance events with a
deterministic universe by the principle of
ignorance. Events seem to be governed
by chance because the immense com-
plexity of the universe makes it im-
possible to know all the relevant facts
about the state of the system. If there
were a demon capable of comprehend-
ing all the important information about
a die, including the exact forces in-
volved in throwing it, its shape, the
properties of the gaming table, and so
on, then that demon could foretell ex-
actly the outcome of a cast. For La-
place, then, the universe was still one
of cause and effect, but human ig-
norance and fallibility made exact pre-
diction impossible.

The first important physical applica-
tions of probabilistic notions came in
the middle of the 19th century with
the development by Maxwell and Boltz-
man of the kinetic theory of gases.
But the influence of Laplace and Car-
tesianism was so great that even at the
level of molecular events it was as-
sumed that there was strict determi-
nation. Only our inability to distinguish
among molecules made, in practice, a
probabilistic system out of a determin-
istic one. There is a great similarity
between Maxwell's demon and La-
place’s. .

It is only in the 20th century that
physical science has accepted the full
metaphysical implications of the no-
tion of chance. Qua‘mum mechan-
ics is profoundly antimaterialistic and
anti-Cartesian. It states. as a funda-
mental property of the universe. the
probabilistic nature of events. No mat-
ter how much information there is
about the past history of a given un-
stable nucleus, it is, in principle, im-
possible to decide when it will decay;
that is, up until the instant of decay
there is no difference between the nu-
cleus that decays and its neighbor that
does not. All that can be specified is
the proportion of an ensemble that will
decay in a given interval. Laplace and
Maxwell postulate demons that do not

exist in fact; Schroedinger and Heisen-
berg deny the possibility of their ex-
istence. )

I have discussed the history of de-
terminism and its eventual rejection as
a universal because I would like to
carry the process one step further and
ask whether even the statements of a
probabilistic universe are too certain
for some phenomena. But this is a para-
dox. How can anything be less cer-
tain than chance? To understand this
we must look at a fundamental axiom
of probability theory, the Law of Large
Numbers, and at the notion of statisti-
cal information.

The Law of Large Numbers states.
in one of its many forms, that the aver-
age value of some variate will tend to
lie in an interval around the true mean
of that variate, which interval gets
smaller and smaller as the number of
observed . values grows larger. As the
sample size grows larger and larger.
the observed mean is surer and surer
to be closer and closer to the true value.
This law holds for a very wide variety
of cases. including mixtures of different
distributions, and can be said to be
the most fundamental axiom in proba-
bility theory. An example of its op-
eration is shown in Figure 1. Fifty
values were chosen from a table of ran-
dom numbers and the mean of these
numbers was taken using only the first
number, then the first and second. then
the first, second, and third, and so on
up to a cumulative mean of all 50.
These means are plotted against the
sample size. The two solid lines repre-
sent the same group of random num-
bers taken in two different orders,
while the dashed lines represent a com-
pletely different set of numbers also
taken in two different orders. We see
that for small sample sizes the means
tend to deviate widely from the true
mean of 5, but that as the samples
grow larger and larger the means get
closer and closer to the true value.
Also evident is the tendency for the
cumulative mean to remain on the
same side of the true value for long
periods. Finally, we see that the order
in which the numbers are taken makes
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Fic. 1. Cumulative means different sequences of random _numbers. Ordinate: cumu-
lative mean; abscissa: length of sequence. The two solid lines are one set of random
numbers in two different orders, the dashed lines are two different orders of a different

set of numbers.

less and less difference as the sample

. size grows and, of course, when all 50

numbers are included, it makes no dif-
ference at all.

While this behavior of means (and
of probabilities) is common over a
great range of varieties, it is not uni-
versal. A famous case is that of the
Cauchy distribution which looks super-
ficially like a normal distribution but
has somewhat higher probabilities of
very large deviations. It is well-known
that a mean based on a single obser-
vation from this distribution is just as
close to the true mean as an average
of a million observations. That is, if
many random numbers were taken
from a Cauchy distribution, Figure 1
would show wild jumps all along the
abscissa with no tendency to approach
the center. To put this in another way,
a mean based on a single observation
from the Cauchy distribution has just
as much information about the true
mean as a sample of size one million.
The Law of Large Numbers might be
restated as guaranteeing that the
amount of information about the true
mean contained in the sample mean
grows larger and approaches perfect in-
formation as the sample grows larger.

Using this notion of information con-
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tent of a sample, we can now go back
to the question of determinism and
chance. In a deterministic system there
is perfect information about the true
state of the universe (at least in theory)
for any single occurrence of an event.
In a probabilistic system, there is less
than complete information in a finite
set of observations, but the information
approaches perfection as the size of the
ensemble sample grows larger. 1 will
call a system capricious if there is less
than perfect information (often there
is none) and if repeated sampling of
the universe fails to increase the in-
formation about the system. We see
then that capriciousness is a function
of the mechanism for information stor-
age available to the detector of the
universe. The Law of Large Numbers
is the law for a detector that never for-
gets, that is, as more and more data are
fed into the mean, it is refined more and
more and approaches the true value.
But a detector that keeps forgetting may
arrive at a steady state equilibrium be-
tween information input and informa-
tion lost so that it cannot perfect itself.
For such a detector the universe remains
forever capricious because it is for-
ever pulling unexpected tricks, repeti-
tions of unremembered events.

e~

Now organisms, looked at as de-
tectors of the universe, have a limited
memory and as individuals are sub-
ject to environmental caprice. But this
is also true of populations and species
through time, that is, evolutionary
adaptation, looked at as acquiring in-
formation about the past environments
in order to predict future ones, can
never be perfect and therefore the en-
vironment, in some sense, will always
be capricious. To illustrate the fact
that the memory mechanism of popula-
tions is weaker than the Law of Large
Numbers, I have used the random num-
bers of Figure 1 to construct an artificial
case of evolution. We assume that a
gene has two alleles, a and 4, and that
neither is dominant. We further assume
that natural selection sometimes favors
one allele and sometimes the other. In
particular, the intensity of selection is
equal to the deviation of our random
numbers from their true mean of 5.
There is a simple equation giving the
frequency of the allele a in any genera-
tion from the frequency in the previous
generation and the intensity of natural
selection in that generation. Figure 2
shows the history of gene frequency
changes in a population subject to a
fluctuating selection. The selection in-
tensities in successive generations are
shown by the crosses. The solid line
shows the history of gene frequency in
a population subject to these selection
pressures for 50 generations. The
dashed line shows another population
subject to the same selection pressures
but in reverse order. We see that the
two populations not only come to
slightly different end points and have
very different histories, but, more im-
portant, their average behavior has been
totally different. The mean gene fre-
quency of the solid line population over
the 50 generations has been approxi-
mately 0.38, while it was 0.57 in the
dashed line population. Moreover, the
variance in gene -frequency by time
has been much greater in the dashed
line population than in the solid line
one. ' :

The nature of gene frequency change
is such that the gene frequency in a
population does not have a simple in-
formational relationship to past en-
vironments. If past environments have
been mostly in one direction, the gene
frequency will tend .o extreme values
(as in the solid line population near
the middle of its life time) and when
that happens it will be very insensitive



/é recent environments and will not
/ cespond 10 them. Thus, 'the low gene
' frequencies in the solid line population
over the last half of its lifetime occur,
despite the fact that nearly every value
of selection (shown by the crosses) was
Jbove the mean during this period.
while it is not obvious from the figure,
the dashed line population generally
contains more information about recent
environments and less about past ones
pecause its  gene frequency remains
pear intermediate values.

{n general, the dynamics of natural
selection are such that gene frequencies
contain little or no information about
cnvironments of the remote past, and
are mostly 2 reflection of the not too
distant past and of recent selection.
This being the case, the genetic struc-
ure of 2 population is incapable of
adjusting 1o environmental fluctuations
that have a very long cycle time or a
very short one, compared with genera-
ion length. Information about very
short term fluctuations can be stored
in physiological homeostatic devices.
But environments that recur only with

Fic. 2. Gene frequency (q) of successive generations in fluctuating environment (x).

Crosses are environmental

value. Solid line: gene frequency
caused by environments given by the crosses. Dashed line:

in successive generations
gene frequencies resulting

from same set of environments in reverse order.

a long cycle time, no matter how fre-
quent they have been, will represent a
capricious nature.

Finally, Figure 2 illustrates the
principal of historicity in evolution. The
average genetic structure of a popula-
tion in time depends not only on the
static probability distribution of environ-
ments. but on their historical sequence
as well. Even though environments may

obey the Law of Large Numbers in
terms of their means and other
moments of their distributions, if the
historical order in which environments
occur is a significant variable in popula-
tion adaptation, then an element of
uniqueness is introduced. Again, for the
population and the species, the ac-
cumulation of information is limited
and nature is capricious.

LOGICAL TOOLS

IN PHYSIOLOGY

William G. Van der Kloot

Whenever | read about the logical
basis of science [ become uncom-
fortable. 1 almost never feel like “an
instrument for pointer readings in the
hands of a disembodied intellect™ (12):
my laboratory life too often seems
remote from the “delicate testing and
remorseless logic” which Eddington (1)
calls the soul of scientific progress.
Many working scientists. I am sure,
are unable to identify themselves and
their daily operations with the automa-
ta specified by students of the “scien-
tific method.” Even an absolutely first-
rate scientist will turn out on close
acquaintance to be wonderfully human.
“His ideas are not well ordered. He
loves discussion but does not think al-
ways with completely consistent
schemes, such as are used by philos-
ophers, lawyers, or clergymen. More-
over in his laboratory he does not
spend much of his time thinking about

scientific laws at all” (15).

Many working physiologists are so
nagged by misgivings about the rigor
of their approach that they delight in
stories belittling the part played by
step-by-step logic in scientific creativity.
For example. take the famous tale of
Otto Loewi: picture him in his peaceful
bed. Easter Eve. 1920 (6). In the mid-
dle of the night he dreams of an experi-
ment perfectly designed to see whether
the slowing of the heart produced by
stimulating the vagus is brought about
by a chemical released from the nerve
ending. He immediately rouses himself,
gropes on the bedside table for a pencil.
and jots a brief note on what he al-
ways described — with  19th Century
reticence — as a small square of thin
paper.

In the morning he cannot read his
own scrawl. Easter day is a torment,
he recalls nothing of his idea, but, of

course. on Faster evening, the dream
is dreamed again. This time he goes
straight to the laboratory and by day
the work is done.

In evaluating this story we must first
conclude that neither the setting nor
the hour of the night make Loewi’s
achievement any less logical (if the life
of the Professor then was like it is now.
probably the day held no time for
thought). The surprise is that he was
suddenly so logical about this subject —
he had not been working on junctional
transmission at all. The action of the
vagus in slowing the heart had been
known for 50 years, and the idea of
chemical transmission was not novel.
What was new was Loewi's sudden
vision of the resemblance between the
idea of chemical transmission and the
work going on in his own laboratory:
he was studying the effects of digitalis
on the heart of the frog. Digitalis was
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