Mathematical Origins of Life Modeling Emergence with NetLogo: Lab 5

Turtle Genome

In this week's lab we will follow the example of Dawkin's biomorphs in the Bind Watchmaker to
evolve digital creatures. The idea is to use NetLogo to build a geometric structure which follows
a simple set of rules. The rules then become a genome for the creatures which are subject to
random mutation from one generation to the next. The selection pressure comes from you. You
choose which mutated form to breed and which to let die. In the end you wander through
phenotype space until a pleasing form emerges.

Recursion in Logo

We will start with the basic structure: Load the file classiclogo.nlogo in the handouts directory.
Once you press setup the interface will have the settings of the Classic Logo, with one turtle at
the origin on a white screen ready to do your bidding. The turtle is hidden, and the pen is
down, so this like a command driven drawing tool. Lets try a few simple forms before coming to
the logo-creatures. With the command center in turtle mode type:

repeat 4 [fd 30 1t 90]

Wow! A square! Ok so that shape isn't going to have much scope for evolving. How about a
spiral? For that write the procedure:

to spiral
let n 20
let step 100
while [n > 0] [

fd step

1t 45

set step step * 0.8
set nn -1

]

end

The procedure has a while loop, which repeatedly executes a series of commands

until the condition n > 0 is no longer true. See if you can understand what the program does.
Press setup to reset the screen then type spiral in the command center. What you get is called
an equiangular spiral. This spiral is not our creature, but you may be able to see that the spiral
has several parameters that influence its form. One is n which controls how many steps are
taken, step is the length of the initial step, 45 is the angle rotated after each step, and 0.8 is a
the scale factor by which the step length decreases each time through the loop. These
parameters can be considered to be the spiral's genome. You could make sliders for all of these
parameters and see how this alters the spiral. Don't. Instead lets look at a recursive way of
drawing a spiral. In recursion we avoid using a while loop and instead have the procedure call
itself. Modify the above procedure as follows:

to spiral [step n]
ifelse n > 0 [
fd step
1t 45
spiral (step * 0.8) (n -1)
[stop]
end

At first sight this recursive definition looks a bit funny. Here is how to understand it. The
procedure spiral now takes two arguments: step and n. You must specify values for these
when you run the procedure. As with the previous procedure the basic element of the spiral is to
move forward and then turn. Then you repeat the process with a slightly larger step. By calling
itself with new arguments the spiral repeats those two simple commands. Notice that n is
reduced by one each time. Eventually it will be reduced to zero and which point the procedure
stops.

Press setup again and then type:
spiral 100 20

and confirm that this procedure does the same thing as previously. Ok, We are almost ready to
make our creatures. But first let's work on the interface.

It will be handy to use the mouse to place our creature where we want them so make a go
procedure as follows

to go
if mouse-down? |
ask turtles |
setxy mouse-xXCOr mouse-ycor
set heading O
spiral step-length step-number

end

Make sliders for step-length and step-number. Don't let n be much larger than 20. Actually
you could also replace the angle 45 with a variable parameter and similarly for the scale-factor
1.2 and then add sliders for them. In this way you can quickly try out different parameter
values in between mouse clicks. Now let's make our creatures.

Branching Creatures
The basic form we will chose for our creatures is a branching structure that will be recursively
defined, in a similar way to the spiral. As a first stab try

to branch [step n]
ifelse n > 0 [
fd step
1t angle
branch (step * scale) (n = 1)
rt (angle + angle)
branch (step * scale) (n = 1)
1t angle
bk step]
[stop]
end

The main part of this procedure is to step forward, turn left and draw a branch, turn right and
draw a branch, turn back to the original heading and then step back to where you started from.
This last part is important. In order for recursion to work, you need to return the turtle to its

starting point before ending the procedure. What makes this interesting is that the branch that is
drawn is identical to the main tree but scaled down, and one level of complexity less. The
parameter n is the recursive level of this procedure and as you will see, Logo chokes if n is
much larger than 15. This is because Logo has to draw 2" branches, which grows very fast with
n. In fact a more reasonable range would be between 1 and 10. This is especially important for
the next change we will make. Replace the spiral command with the new branch command in
your go procedure. Try it out.

As it is this branching structure, with only 4 parameter values, doesn't have a large enough
genetic code to make it interesting for growing creatures. We can add another parameter quite
easily. We could also allow our tree to have segments, by steping forward a number of times to
repeat the pattern. Add a slider for segment-number, ranging from 1 to 6. Here is a
modification that should work.

to branch [step n]
ifelse n > 0 [
repeat segment-number [

fd step

1t angle

branch (step * scale) (n = 1)
rt (angle + angle)

branch (step * scale) (n = 1)
1t angle

]

bk (step * segment—-number)]
[stop]
end

Notice that we now step back “segment-number” of times to return to our starting point. We
now have 5 genes in our genome. See what kinds of creatures you can create. | bet most of
these look like trees. No surprise here! In fact our creatures have far too much symmetry. In all
developing creatures, symmetry is broken, so we must make one last change to our genetic
code.

Symmetry breaking

To break symmetry we will allow left branches and right branches to branch off at different
angles. As a first try let's define two new angles a left angle called 1angle and a right angle
called rangle. Add sliders for these ranging from 0 to 180. Then modify your branching
program as follows

to branch [step n]
ifelse n > 0 [
repeat segment-number [
fd step
1t langle
branch (step * scale) (n - 1)
rt (langle + rangle)
branch (step * scale) (n = 1)
1t rangle
]
bk (step * segment-number)]
[stop]
end

Make sure you understand the changes and try out your new 6 code genome. You can quickly
get a garbled mess. Most organisms retain bilateral symmetry so let's try to preserve this.
We will still allow left and right branches to differ, but in a way that retains reflection symmetry.

Change your branch program back to the symmetric version, except have it call two new
procedures 1branch and rbranch

to branch [step n]
ifelse n > 0 [
repeat segment-number [

fd step

1t angle

lbranch (step * scale) (n = 1)
rt (angle + angle)

rbranch (step * scale) (n = 1)
1t angle

]

bk (step * segment—-number)]
[stop]
end

The new procedures will be almost identical to the main branch procedure accept, the angles
that are turned will now different

to lbranch [step n]
ifelse n > 0 [
repeat segment-number [

fd step

1t langle

lbranch (step * scale) (n = 1)
rt (langle + rangle)

rbranch (step * scale) (n = 1)
1t rangle

]

bk (step * segment-number)]

[stop]
end
to rbranch [step n]
ifelse n > 0 [
repeat segment-number [
fd step
1t rangle
lbranch (step * scale) (n = 1)
rt (langle + rangle)
rbranch (step * scale) (n = 1)
1t langle
]
bk (step * segment-number)]
[stop]
end

The only difference is that in the left branch we turn left first and in the right branch we turn right
first.

We now have seven genes for our genome. These are: step-number, segment-number,
step-length scale, angle, langle and rangle. There are some more genes we can add
to our genome, but we'll save that for homework..

Homework

At the moment you select your creatures by changing sliders. This is not how evolution does it.
Instead we start with a creature with a particular genome. It reproduces with random mutations,
and one of the mutants is then selected as the “fittest” creature, it reproduces and so on. After
several steps the ideal creature emerges. We want to do this. | recommend saving your
program with a new name for these changes, as you may want to refer to the old one later for
reference.

1. First create a turtles-own variable called genome. This will be a list that contains the
values you assign to the different gene-types via the sliders. (The values are the genes, and
the variable names are the genotype.) At this point you will need to remove all your sliders
from the interface. Also define a globals variable called mutation-rate. This will be a list
that defines how by how much you will mutate each gene during each time step.

2. Modify your setup procedure to assign the appropriate values to the genome and
mutation-rate lists. Alist is made by listing the numbers in order in square brackets. For
example:
set primes [2 3 5 7].

The order is important. Note the genome must be defined in the create-custom-turtles
command, while the mutation-rate list should be defined outside of this command. | will
leave you to choose the values for these two lists, however, as a rule of thumb, let your initial
genome be a simple shape (eg. segment-number 1 and step-number 2). Also, when
choosing mutation rates, make sure there is scope for small, but still significant change. Use
your original program to try out what mutation rates make sense. Make sure the gene order
in your mutation-rate list corresponds to the gene order in your genome . Add a
comment to your program to let people know what each number refers to.

3. Change your setup procedure to create 9 turtles. Initially each will be setup up with the
same genome. Now write a place-turtles procedure that places each turtle in its own
location around the screen. | suggest leaving turtle 0 at the center and then arranging turtles
1 through 8 in a square around it. Make good use of space. Before growing your turtles, you
need to mutate all but turtle O.

4. Write a mutate procedure which chooses a random gene from a turtles genome and
changes it by adding or subtracting the corresponding mutation-rate for that gene (you
need to be able to mutate in both directions. You may worry about what happens if a gene
has a value zero or negative. If you are worried about this include an i felse condition in
your procedure to prevent this from happening). To refer to an item in a list use the item
reporter, and to change an item in a list use the replace-item command. Be aware that the
first item in a list is actually referred to as item 0. For example

item 1 [2 3 5 7]

returns the value 3 since 3 is item 1 in the list. If | want to define a new list with the 3
replaced by a 4 for some reason I'd write

set new-list replace-item 1 [2 3 5 7] 4

My new list would be [2 4 5 7]
5. Now you can use your mutate procedure. In the setup procedure ask all but turtle 0 to
mutate.

. Now you are ready to grow your creatures. Define a grow procedure which first assigns all
the gene-values to their genotype names. Then ask the turtles to branch as you do in your
go procedure. Use your grow procedure after your mutate procedure in the setup. You
should see nine simple branching creatures on the screen, each with a slight variation from
turtle O which is in the middle.

. You are nearing the end of this lab. You now need to modify your go procedure so that you
can use the mouse to select your favorite creature. First define a new globals variable
called fittest. Then set fittest to be the turtle closest to the mouse when it is pressed
down. You'll need to use the distancexy reporter for this.

. Now set all turtles to have the same genome as the fittest turtle, paint all patches white to
erase the screen, mutate all but turtle 0 and then grow your turtles again.

. You should now be able to select your favorite turtle with a mouse click. When you do, you
should see new mutants grow. Provided you have set your mutation rates about right you
should be able to weave your way through phenotype space, selecting creatures without
much care for the actual genes. If you want to keep track of the actual gene's you could add
monitors showing each of the gene's for turtle 0, who will always be the latest selected.

10.Now that you've played around with that. Let's extend the genome a bit. First of all there is

no rule that says you have to scale right and left branches the same amount. Add rscale
and a 1scale genes, and modify your rbranch and lbranch procedures appropriately
so that you retain bilateral symmetry. You may want to try this out first in your original
program, so that you can make sure you get it right.

11.You can also scale the angles, so that they change as you go to a deeper level in your tree.

This is a bit harder to do. Create rangle-scale and langle-scale genes. In order to
use them you will need to give your 1branch and rbranch procedures two new
arguments, langle and rangle. Then when you use these commands include these two
new arguments scaled appropriately. You will need to add these to all places where you refer
to these procedures. One consequence of doing this is that now Netlogo will complain about
having defined 1angle and rangle already as part of the genome. You will have to
rename these variables in the turtles-own line and when you assigned values to them in
the grow procedure. Perhaps you could call them start-langle and start-rangle.

12.Now think about how you might add a color gene to your creatures. Perhaps you could

change color according to some color-factor at each level, or perhaps color, is not controlled
by a new gene, but is just linked to another gene — maybe the step size or the angle. Try to
liven up your creatures with some color-scale in some way.

13.Now have some fun. Evolve three new creatures, and include the genetic code for these

creatures in the information tab of your interface.

14.Save your model, giving it the name “lasthame_firstname_week_5.nlogo”. When you are

finished the homework drop this file in the dropbox folder. Before submitting your NetLogo
program write comments for all your procedures explaining what each “non obvious” line
does.

