Mathematical Origins of Life Assignment 8 Solutions
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6.1.4.

6.1.9.

6.1.10.

a. Since the probability of having the allele is 1/31 for the male and also 1,/31 for
the female, assuming these are independent the probability is (1/ 31)? ~ .00104.
b. Since the child must inherit the recessive allele from each parent, the prob-
ability is (1/2)(1/2) =1/4.
e. (1/31)%(1/4) = .0002601.

a. Genotype Ww(&g, with round vellow seed phenotype.

b. If the genes assort independently, F» should be: 1/16 with wrinkled green
seeds, 3/16 with wrinkled yellow seeds, 3/16 with round green seeds, and 9/16
with round vellow seeds.

c. If Mendel’s data did not exactly match these proportions, he should not
necessarily doubt the independent assortment hypothesis. After all, these pro-
portions are really probabilities, so only for very large amounts of data should
the fit be very close. The more data he collected. the closer he should expect his
data to match these proportions if the hypothesis 15 valid. Deciding how close
is close enough for a match, taking into account the amount of data collected,
will be discussed in the next section.

The cross is Y'y x Y'y. Embryo genotype ratios will be Y'YhY lyyy=1:2:1,
but only the last two genotvpes will be born. Thus the viable progeny will
have genotypes Y'y or yy, with respective phenotypes vellow and agouti, in
proportions 2/3 and 1/3.

6.1.12. a. The trait is dominant. If it were reoéﬁsive, all children of the parents

would exhibit brachydactyly. The parents must each be heterozygotes, since
one child has normal length fingers. The child with normal length fingers is
a homozygous recessive. The child with short fingers is either homozygous
dominant or heterozygous.

b. The probability that one child has normal fingers i1s 1/4, and since the two
children’s phenotypes are independent. the probability that hoth have normal
length fingers is (1/4)* = 1/16.

6.1.14. Fy has genotype Ww only, with pink flower phenotype. Fb has genotvpes

WW, Ww, and ww in proportions 1/4, 1/2, and 1/4, with red Hower, pink
flower, and white flower phenotypes, respectively.



6.1.16.

6.2.6. a. (°)(1)1(4)2 =154 = 15 ~ 2344

a. Type A: I*TA, IATY: Type B: I¥1¥, I¥IY; Type AB: I*T¥; Type O:
1°1°

b. I4T4 % TB19 produces offspring with genotypes I''T® and I*T9 with equal
probability. Thus type AB and type A blood oceur with relative frequencies
1/2 and 1/2.

c. From 179 x IPI9 we expect 1/4 of the progeny to have type O blood
(genotype I or D}. So out of four children, we would expect one to have type
) blood. However, anv number might have this blood type. The probability
of any one child having it is 1/4, and it is really only in a very large number of
trials (much greater than 4) that we can be reasonably confident that close to
1/4 of the trials will produce this outcome. For instance, there is a probability
of (1/4)* = 1/256 that all four children will have type O blood, and of (3/4)! =
81/256 that none of them will. (See the next section for a more careful definition
of the word ‘expect’.)

s

b. P(exactly i boys in 6 children) = ($)(1)°, so for i = 0,1,2,...6, the values
are: 0156, .0038, 2344, 3125, 2344, 0938, .0156.
P(exactly i girls in 6 children) has exactly the same values.

c. The expected number of hoys is E:LD iP(exactly i boys in 6 children)
0(.0156) + 1(.0038) + 2(.2344) + 3(.3125) + 4(.2344) + 5(.0938) + 6(. l]luﬂj

Alternately, for a binomial distribution, the expected value isn-p =6 - — =
d. P(4 or more girls of 6 children) = P(4 girls) + P(5 girls) + P(6 glrls]

| !'-“"!'-“"II

2344 + 0938 + .0156 = .3438.

6.2.12.

6.2.14.

a. 1/2
b. (1/2)(1/2) =1/4

c. (?(132)(1;2) =1/2

d. (7)(1/2)(1/2) + {3)(1;2]9{132}” = 3/4, or, computing the probability that
it is not the case that no children are albinos, 1 — (3)(1/2)°(1/2)? = 3/4.

e. Using the formula for the expected value of a hinomial random wvariable,
2(1/2) = 1, or, using the definition of Expect.ed value, 0+ (2)(1/2)°(1/2)% +1-
(D121 1/2)" +2- (3)(1/2)°(1/2)2

a. P(age at death = 0) = 1/2;

‘P(age at death = 1) = (1,/2)(3/4) = 3/8;

P(age at death = 2) = (1,/2)(1/4)(3/4) = 3/32;

P(age at death = 3) = (1/2)(1/4)(1/4)(1) = 1/32.

These probabilities add to 1 since the events are disjoint and exhaust all pos-
sibilities.

b. 0(1/2) + 1(3/8) + 2(3/32) + 3(1/32) = .65625



6.2.15. a. Recall from problem 6.1.10, that the probability an offspring is yellow is 2/3

Then the probability 5 of 12 have normal coloring is (lf}.[] /3)%(2/3)7 ~ 1908,
b. zéim (') {2;3}%153}12?*& ~ 1811
e Yoo (M3)(2/3)7(1/3)1277 22 .0039

6.2.16. a. Since the probahility that any given child in the family will develop Hunting-

6.4.1.

6.4.3.

6.4.

[ §

6.4.7.

ton disease 1s 1/2, the probability that none of 4 do 1s (;][ljﬂjn[lfﬂjd =1/16
b. The probahility that at least one of the 4 develops the disease is 1 —
P(none of 4) =1—-1/16 = 15/16.

c. The probability that 3 or more develop the disease is {;][1{2)3(1,!2)1 +
(:} (1/2)4(1/2)" = 5/16.

a. Let p be the frequency of cf in the population. Then p* = 9/450, so
p e 1414,

b. The percentage of the population heterozygous for the gene is 2p(1 — p) =~
2428,

a. 2p(1—p) = 4 implies p’ —p+.2=0,s0p= (1£/T— 8)/2=(1£2)/2 ~
2764 or .7236, with g being the other value.

For 2p(1 — p) = H, the values of p and g are (1 £+/1—2H)/2.

b. H = 2p(1—p) is maximized when p = 1/2, g = 1/2. This can be seen either
by graphing the parabola, or by using caleulus.

. a. Let p, q, and r denote the frequencies of the alleles I*, I®, and I, Assuming

random mating in the population,
p° 4 2pr =32, ¢° +2r =15, 2pg = .04, r* = 40

Solving these gives r = .7, p = .2, and g = .1. Note that even though there are
4 equations in only 3 unknowns here, these values makes all equations hold.
b. The equations to be solved are

P+ 2pr = 40, ¢° + 2gr = .11, 2pg = .05, 1 = 44,

From the last we find r = .6633. Then the first gives p = .2532, and the second
gives g = 0783, With these values 2pg = 0396, so the third equation is not
satisfied. (Also, p+ g+ r # 1.) Thus the system has no exact solution.

It could bhe that the population is not in a Hardy-Weinberg equilibrium, or
that the data is flawed. Given the relative ease of collecting bloodtype data,
and the doubtfulness of the random mating assumption applying to the U.S.
population, the first is more likely.

a. p = (2Npy + 2Npa)/(AN) = (py + p2) /2

b.After the flood, a*a* has frequency (p? + p3)/2, a*a has frequency pi(1 —
p1) + pa(l — po), and aa has frequency ((1—py)? + (1 —pa)?)/2.

A Hardy-Weinberg equilibrium would predict the three frequencies were (p; +
P2)?/4, (p1 +p2)(2 — Py — pa)/2, and (2— py — p2)?/4.

These disagree (for most values of py, p2) since the population has not yet
undergone random mating. There is no reason to expect a Hardy-Weinberg
equilibrium.



6.4.9.

6G.4.11.

a. The model shows a gradual increase in frequency of A, toward fixation at
p = 1. Thus a is eliminated ultimately. It appears that p = 1 is a stable
equilibrium, and p = 0 an unstable one.

b. The model shows a gradual decrease in frequency of A, toward elimination
at p = 0. Thus A is eliminated ultimately. It appears that p = 0 is a stable
equilibrium, and p = 1 an unstable one.

c. If py = .5, the frequency of A increases, toward p = 1; if py < .5, the fre-
quency of A decreases, toward p = (). Thus the model shows a gradual increase
in the frequency of whichever allele is initially more common. Eventually that
allele 1s fixed in the population, while the other dies out. There are stable
equilibria at p =0 and 1, and an unstable one at p = 5.

d. If pp = .5, the frequency of A decreases, toward p = .5; if pp < .5, the
frequency of A increases, toward p = 5. Thus the model shows movement
toward an equal proportion of both alleles. While p = .5 i1s a stable equilibria,
there are unstable ones at p =0 and 1.

a. The parameters indicate homozygous dominants do not reproduce, while
heterozygotes have no selective disadvantage relative the homozygous reces-

sives. (See problem 6.4.10.)
iy R By

b. pey1 = = = Jif gy £ 0 (or pe # 1).
20 +4q;  2py +P%t pe+1 { )
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Note that this shows that as # — oo, p; — 0 s0 such an allele will die out under
random mating.

6.4.12. a. The homozygous recessives have no progeny, while heterozygotes are at no

relative advantage to homozvgous dominants.

b. per1 =1/(2—py)

c.pp=(t—(t—1)po)/((t+1)—tpo), thus as t — oo, py — 1 and the dominant
allele becomes fixed.



