Mathematical Origins of Life Assignment 3 Solutions

Allman 3.1 Ex 2,6,7

3.1.2. a. The peaks on the graph of P = cost lead those on the graph of (J; = sint

3.1.6.

31T

(by a time interval of 7 /2), similar to those of the prey and predator.

b. The plotted points lie on a circle centered at the origin, starting on the
x-axis when t = 0 and proceeding counterclockwise around the circle.

c. Because the oscillations in the first figure get smaller as time increase (Le.,
they are damped), the spiral in the second figure goes inward.

With the other parameters as in the text, r = 2.1 results in what appears to
be a stable equilibrium, despite the fact that in the logistic model it leads to a
2-cyele. This illustrates that a predator-prey interaction can have a stabilizing
effect on otherwise complex dynamics. A real-world example of this involves
deer populations and hunters. (Can you find parameter values for which the
logistic model is chaotic, vet the predator-prey model has an apparently stable
equilibrium?)

The parameter w represents the size of the prey population that can be pro-
tected in the refuge. If P > w. then P—w 1s the part of the prey population not
in the refuge, which is therefore subject to the predator-prey interaction. The
given interaction terms thus describe the predation appropriately. If P < w,
however, the terms are not correct. Replacing the P — w with max(0, P — w)
would be better.

Allman 3.2 Ex 1,3,7

3.2.1.

If u/v = 1, the vertical line of the (}-nullcline joins the sloping line of the P-
nulleline on the P-axis at P = 1. Then the only equilibria are (0,0) and (1,0).
If u/v > 1, the vertical line lies even further to the right, and intersects the
sloping line below the P-axis. The resulting equilibrium has @* < 0, so (0,0)
and (1,0) are the only two biclogically meaningful equilibria..

3.2.3. The nullclines are described in problem 3.2.1. For both u/v =1 and u/v > 1

the region under the sloping line should have arrows pointing down and to the
right. The region to the right of the vertical line should have arrows pointing
up and to the left. The remaining region should have arrows pointing down
and to the left. MATLAB experiments confirm this.



3.2.7. a. Both predator and prey are follow the logistic model in the absence of the
other, but the extra terms mean the predator benefits and prey is harmed from
the predator-prey interaction.

b. The P-nullcline is as in Figure 3.4. The (J-nullcline is the P-axis () = 0)
together with the line P = (u/v)((? — 1) which goes through (0,1) and slopes
upward. Ifr/s > 1, the two sloping lines of the nullclines intersect, and produce
four regions. If r/s < 1, there are only three regions. Below P = (u/v)(Q — 1)
arrows point up; above it they point down. Above the line @ = (r/s)(1 — F)
arrows point to the left; below it they point to the right.

c. Equilibria are at (0,0), (1,0) and ((r — s)u/(ru+ vs), (u + v)r/(ru+ vs)).
The third equilibrium is only biologically meaningful if r/s > 1.

d. For r/s > 1 you might expect orbits to move counterclockwise around the
third equilibrinum, provided they begin close enough to it. Whether they spiral
inward or outward is not yet clear.



Allman Ch 1.2, Ex 2,5,7,8,9,11

1.2.2. AP will be positive for any value of P < 10 and AP will be negative for any

1.2.5.

1.2.6.

1.2.8.

value of P > 10. Assuming P > 0 so that the model has a meaningful biological
interpretation, we see that a population increases in size if it is smaller than the
carrving capacity K = 10 of the environment. and decreases when it is larger
than the environment’s carrying capacity.

a. AP = 2P(1 — P/10); AP = 2P — 2P? AP = 2P(10— P); Py, =
3P, — 2P?
b. AP = 1.5P(1 — P/(7.5)); AP = 1.5P — 2P% AP = 2P(7.5— P);
Py =25P, — 2P
b. The MATLAB commands x=[0: .1:12], y=x+.8#%x.*(1-x/10), plot(x,y)
work.
¢. The cobweb diagram should fit well with the table below.
t |0 1 2 3 4 6]
Py || 1| 1.72 | 2.8593 | 4.4927 | 6.4721 | 8.2088
However, it is hard to cobweb very accurately by hand. so you shouldn’t be too
surprised if your diagram matches the table poorly. Errors tend to compound
with each additional step.

. After graphing the data, a logistic equation seems like a reasonable choice for

the model. Estimating from the table and graph, K = 8.5 seems like a good
choice for the carrying capacity. Since Po/P, = 1.567, a reasonable choice
for r is .567. However, trial and error shows that increasing the r value a
bit appears to give an even better logistic fit. Here is one possible answer:
AP = 63P(1— P/85).

a. My, = My + .2M(1 — ;‘_{‘j] where M; is measured in thousands of indi-
viduals. Notice that the carrying capacity is K = 200 thousands, rather than
200, 000 individuals. In addition, observe that if the model had been exponen-
tial, M, = M; + .2M,, that changing the units would have no effect on the
formula expressing the model.

b. Liyy = Ly +.2L(1— L;), where L; is measured in units of 200, 000 individ-
nals.




1.2.9.
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1.2.11. a. The equation states the change in the amount N of chemical 2 is propor-

tional to the amount of chemical 2 present. Values of r that are reasonable are
0<r<1and Ny =0. (However, if r = 1, then all of chemical 1 is converted
to chemical 2 in a single time step.) A graph of N; as a function of ¢ looks like
an exponential decay curve that has been reflected about a horizontal axis, and
moved upward so that it has a horizontal asymptote at N = K. Thus, N; is
an increasing function, but its rate of increase is slowing for all time.

b. The equation states the amount of chemical 2 created at each time step is
proportional to both the amount of chemical 1 and the amount of chemical 2
present. This equation describes a discrete logistic model, and the resulting
time plot of N; shows typical logistic growth. Note that with a small time
interval, r should be small, and so the model should not display oscillatory
behavior as it approaches equilibrium. If Nj equals zero, then the chemical
reaction will not take place, since at least a trace amount of chemical 2 is
necessary for this particular reaction. The shape of a logistic curve makes a lot



Allman 1.3, Ex. 6(a)(c),7(a),11

1.3.6.

1.3.7.

a. P*=10,15

b. P*=10,44

c. P*=10,20

d. P*=0.a/b

e. PP=0,(c—-1)/d

a. At P* = (0, the linearization is p;,; ~ 1.3p,. Since |1.3| > 1, P* =0 is

unstable. At P* = 15, the linearization process gives

15+ pro1 = 1.3(15 +p¢) — .02(15 +pe)* =

15 + pres = [1.3(15) — .02(15)%) + 1.3(pe) — .02(30p; + p2) =
pes1 = 1.3(pt) — 02(30p; + pe°) =
pes1 & 1.3(pt) — .02(30p;) = .Tps.

Since |.7] < 1, P* = 15 1s stable.

1.3.11. a. Since the concentration of oxygen in the blood stream can not be more than

that of the lung, B can not change by more than half the difference (L — B);
thus, 0 < r < .5,

b. AB=r(K —2B)

c. If we choose an initial value 0 < By < .5 for the oxygen concentration in the
bloodstream, then B steadily increases up to B* = 5K . The rate of increase
slows as B gets close to 5K, If r 1= increased to values just slightly smaller
than .5, then B approaches equilibrium quite quickly, much more quickly than
with r = 1.

d. B* = K/2. (Note that the denominator is the total volume of the two
compartments, and B* has the correct units.) This answer makes sense in
that the equilibrium concentration for B (and for L) would be (amount of
oxygen)/(total volume).

e. Ab=r(K — 2(K/2+ b)) = —2rb;. Equivalently, byyq1 = (1 — 2r)b;.

f. b = (1 —2r)'bo. B; = K/2+ (1 —2r)"hy. Note that by < 0, since we assume
that L = B initially. So, since 0 < 1—2r < 1, B increases up to its equilibrium
value of K /2.

g. Suppose the volume of the lung is V; and the volume of the bloodstream is
Vg, then the total amount of oxygen K = LV, +BVp and L = (K — BVg)/VL.
The equation for AB then becomes ABF = r((K — BVg)/V, — B) and the
equilibrium is B* = K/(VL, + Vi), ete.



