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For Simple Linear Regression:

� Underlying assumption:  Causation

� A linear model:  y = a + b x + error

� A = y intercept

� B = slope

� Residual = The vertical distance between the 
point and the estimated line.



Understanding the Results

� The p-value associated with each coefficient 
tells us whether we can reject the null 
hypotheses that those coefficients equal 0.

� The r2 value tells us the proportion of the 
variation in y that is explained by the variation in 
x. The large the r2 value, the better the model.

� A plot of the residuals vs the predicted value of y 
should show no pattern.

� A histogram of the residuals should approximate 
a normal distribution.



• In R:  lm(y~x)



Multiple Regression

� Model:  y = z + b1 x1 + b2 x2 + . . . + bk xk
� Generates a multidimensional surface, rather 
than a line

� Assumes an additive effect of the x variables

� Null hypothesis:

� Ho:  B1 = B2 = . . . = Bk = 0

� Alternative hypothesis:

� Ha:  At least one of the B is not equal to 0



� We can reject the null hypothesis (B = 0) for a 
given coefficient if the associated p-value is 
smaller than our alpha.

� p-values in multiple regression assess the 
significance of each x variable, assuming that all 
other x variables are included in the regression 
equation (a situational/conditional value for p)

� Finding the best model to fit the data involves a 
lot of trial and error



� New issues to address:  
� Multicollinearity, or a correlation between two or more 
of the x variables

� Increases the standard errors, results in incorrect 
sign and magnitude of coefficient estimates

� Evaluate the correlation matrix of the variables first 
and eliminate one of any pair that appears highly 
correlated

� Interactions between the x variables

� Interaction implies a combined effect of the 
variables on the y variable:  The impact of one x 
variable depends on the level of the other(s)

� Run regression models that include interaction 
terms and evaluate the significance of those terms



Example:  Nuclear Power Plant 
Construction Times

Scientific Hypothesis:  The length of time it took to 
construct nuclear power plants in the U.S. 
depended on who supplied the reactor and the 
size (capacity) of that reactor.



� Data:  Construction time (numeric: days from 
construction start to going on line), Suppler 
(categorical variable), Capacity (numeric: MW)

� Approach:
� First, generate a correlation matrix

� > nuke<-read.csv(file="Nuclear.csv",sep=",",head=T)

� > cor(nuke)

– Supplier   Capacity     Constr

– Supplier 1.00000000 0.06534536 0.05384731

– Capacity 0.06534536 1.00000000 0.68937442

– Constr 0.05384731 0.68937442 1.00000000

� No apparent strong correlation between the x 
variables



• Next, run the “everything and the kitchen sink”
model, including all x variables and the 
interaction term



• > summary( 
lm(nuke$Constr~nuke$Supplier+nuke$Capacity+nuke$Supplier*nuk
e$Capacity))

• Call:
• lm(formula = nuke$Constr ~ nuke$Supplier + nuke$Capacity + nuke$Supplier * 
• nuke$Capacity)

• Residuals:
• Min      1Q  Median      3Q     Max 
• -1628.2  -647.1  -188.9   364.7  4495.1 
• Coefficients:
• Estimate Std. Error t value Pr(>|t|)
• (Intercept)                568.2856  1991.3451   0.285    0.776
• nuke$Supplier -507.2821   619.7776 -0.818    0.415
• nuke$Capacity 2.6725     2.1588   1.238    0.219
• nuke$Supplier:nuke$Capacity

0.5738     0.6696   0.857    0.394

• Residual standard error: 1021 on 100 degrees of freedom
• Multiple R-squared: 0.4791,     Adjusted R-squared: 0.4635 
• F-statistic: 30.66 on 3 and 100 DF,  p-value: 3.855e-14 



• Try again!
• > summary( lm(nuke$Constr~nuke$Supplier+nuke$Capacity))
• Call:
• lm(formula = nuke$Constr ~ nuke$Supplier + nuke$Capacity)

• Residuals:
• Min      1Q  Median      3Q     Max 
• -1533.6  -636.3  -194.5   339.9  4472.4 

• Coefficients:
• Estimate Std. Error       t value Pr(>|t|)    
• (Intercept)   -1068.1579   564.0495       -1.894   0.0611 
• nuke$Supplier 14.2973   116.8518        0.122   0.9029    
• nuke$Capacity 4.4780     0.4696  9.536 9.44e-16 ***
• ---
• Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
• Residual standard error: 1020 on 101 degrees of freedom
• Multiple R-squared: 0.4753,     Adjusted R-squared: 0.4649 
• F-statistic: 45.75 on 2 and 101 DF,  p-value: 7.16e-15 



• And again!
• > summary(lm(nuke$Constr~nuke$Capacity))
• Call:
• lm(formula = nuke$Constr ~ nuke$Capacity)

• Residuals:
• Min      1Q  Median      3Q     Max 
• -1520.9  -645.1  -188.4   354.0  4470.8 
• Coefficients:
• Estimate Std. Error         t value Pr(>|t|)    
• (Intercept)   -1027.8853   455.8364         -2.255   0.0263 *  
• nuke$Capacity 4.4818    0.4663             9.611 5.91e-16 ***

• ---
• Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
• Residual standard error: 1015 on 102 degrees of freedom
• Multiple R-squared: 0.4752,     Adjusted R-squared: 0.4701 
• F-statistic: 92.37 on 1 and 102 DF,  p-value: 5.912e-16 



Plotting Construction Time vs. Capacity:

Not exactly linear!



Transform Constr by taking the log:

Much better!



• Rerun the model using lConstr:
• > summary(lm(lConstr~nuke$Capacity))

• Call:

• lm(formula = lConstr ~ nuke$Capacity)

• Residuals:

• Min      1Q  Median      3Q     Max 

• -0.4835 -0.1648 -0.0299  0.1481  0.7903 

• Coefficients:

• Estimate Std. Error t value Pr(>|t|)    

• (Intercept)   6.5339881  0.1210338   53.98   <2e-16 ***

• nuke$Capacity 0.0015340 0.0001238   12.39   <2e-16 ***

• ---

• Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

• Residual standard error: 0.2695 on 102 degrees of freedom

• Multiple R-squared: 0.6008,     Adjusted R-squared: 0.5969 

• F-statistic: 153.5 on 1 and 102 DF,  p-value: < 2.2e-16



� Results in the model for U.S. nuclear reactor 
construction time:

� Log(Construction Time) = 688.14 + 1.001 * Capacity 
(MW), or

� Construction Time (days) = 6.534 * exp (0.0015 * 
Capacity)



Recap

• Check for correlations between x variables

• Run the full model

• Eliminate variables that do not make a 
significant contribution to explaining y

• Rerun the model

• Continue until you have a model with a 
relatively high r2 value and statistically 
significant x variables


