Atoms, Molecules and Reactions
Fall 2013, Winter 2014 and Spring 2014 quarters
Taught by
Prerequisites
In previous chemistry work, you learned what the atomic orbital shapes were. In this program, you will explore how we know their shape. In previous chemistry work, you learned what a conductor was. In this program, you will examine the solid-state structural characteristics that indicate a material is a potential conductor. You will explore the "But why?" of chemistry by examining topics in thermodynamics, quantum mechanics, kinetics and materials chemistry. Many of the topics require a strong mathematical foundation and comfort with calculus applications.
In the lecture component, faculty will present the laws of thermodynamics, enthalpy, entropy, chemical potential, phase diagrams, Gibbs free energy, reaction spontaneity, solid-state structure, solid-state bonding theories, point group symmetry, applications of symmetry, transition metal complexes, materials synthesis, Maxwell relations, the Schrodinger equation, atomic and molecular energy levels, electronic structure of atoms and molecules, unimolecular kinetics, biomolecular kinetics and current kinetic theories.
During fall quarter, students will participate in physical chemistry and materials chemistry laboratory experiments. The laboratory component in the winter will train students to use and to explain the theory of several instruments for chemical analysis. In the spring, students will focus on enhancing skills in experimental design and research methods with the incorporation of team research projects surrounding a historical experiment in chemistry. In addition, emphasis will be placed on the development of technical writing skills and on interpretation and integration of issues pertaining to chemistry and society.
Fields of Study
Preparatory for studies or careers in
Location and Schedule
Campus location
Olympia
Schedule
Offered during: Day