1.  For each equation below, identify a,b, and c,  the y intercept, the axis of symetry, and tell if it opens up or down.  Then graph the function in gcalc.net or other graphing program.  The last 2 you will need to get into y = ax^2 + bx + c format
             a. y =  -3x^2 – 2x + 1
                              1.  a=-3,  b=-2,  c=1,  y intercept = 1,  axis of symmetry = -b/2a, or 2/-6, and it opens down since a is negative

            b.  y = 5x^2 + 3x – 7                   
                            1.  a=5,  b=3,  c=-7,  y intercept = -7,  axis = -3/10,  opens up

            c.   2y – 5 + 3x^2 = y + x^2 – 3x + 2
                           solve for y:   y = -2x^2 – 3x  + 7   now,  a = -2, b=-3, c=7,  y intercept = 7, axis = 3/-4,  opens down

            d.   3 + y = 7 – 3x + 2x^2
                               solve for y, put it ax^2 + bx + c order:   y = 2x^2 - 3x + 4   now, a=2, b=-3, c=4, y intercept = 4,  axis = 3/4   opens up
          
      2.     for each of the above, find the x intercept using the quadratic equation, found in the book.  Tell if it actually has x intercepts, and what that means if it does not.

                y =  -3x^2 – 2x + 1        use quadratic formula:  ( -b (+-) (b^2 – 4ac)^(1/2) )/ 2a      The easiest way to do this is to find (b^2 – 4ac) first. If this is 0, then there is 1 root at -b/2a,   If this is negative, then there are no root, meaning that the graph stays above or below the x axis.   If b^2-4ac  is positive, the 2 roots are the answer from the rest of the formula:     for a above, then,  b^2 - 4ac  is  4 – 4(-3)(1)  or 16..   So, the 2 roots are:  -b + 4/2a   and -b - 4/2a   or  2+4/-6  or -1  and  2 – 4/-6,  or  1/3.            Plug these 2 values in for x and see that you get y=0.  
                       for problems b:   find that b^2 -4ac  is     9 – 4(5)(-7)   or  9 – (-140)  or 149     The square root of 149 is about 12.2.    So the roots are:    -b + 12.2/2a  and -b - 12.2/2a       or -3 + 12.2 / 10    and  -3 – 12.2 / 10
                       for problem c.  b^2 - 4ac   is   9 – 4(-2)(7).     or 9 – (-56)  or 65.     Square root is 8.1.  This equation has 2 roots,  at 2 + 8.1 / -4  and 2 – 8.1/ -4
                       for d,   b^2 - 4ac  is   9 – 4(2)(4)   or  9 – 32  or – 23.  since the value in the square root is negative, this equation has no roots.

           
       3.    Factor:    3(x^3) + 12(x^2) + 9x
                          First, pull out a common factor of 3 to get  3( x^3 + 4(x^2) + 3x)   now pull out a factor of x to get:   3x(x^2 + 4x + 3).  Now factor the value inside the (  )       this gives you:    (x + 1) and (x + 3)  Final answer is   3x(x+1)(x+3).  NOTE:  I will not ask a factoring problem like the last piece of this on the final quiz.  You could us the quadratic equation to get the same answer.
          
       4.   Solve:    (x + 2)^(1/2) + 2 = 5
                               isolate the square root to get:    (x+2)^(1/2) = 3    square both sides to get:   x + 2 = 9.   x = 7

       5.  Find an x that would make this equation true:   3 + 2x = 2x^2 – 3x + 1
                                        Put into ax^2 + bx + c  = 0 format.  Use the quadratic equation:      0 = 2x^2 – 5x – 2   a=2, b=-5, c=-2  Now find b^2 -4ac.    25 – 4(2)(-2)  or 25 – (-16)   41 or 6.4   There are 2 answers:    5 + 6.4 / 4  and 5 – 6.4 / 4

       6.  Do number 18 for the exercises  for 4.2.  This is the problem to find the dimensions to enclose the maximum area given you need 3 sides covered (Lake Erie)  (A challenge)  
                         check in the textbook

       7.   Sove:    x^(2/3) = 4
                           take each side of the equation to the 3/2 power.  This gives you:  x = 4^(3/2) power, or 8