2.  Draw a quick sketch of  log(10x)
              (check with gcalc.net)
4.    2112(base 3 )  =   ________  base 10
            ( 68 )
6.   85 (base 10 )  =  _________ base 5
              (320)
8.  log (base 3 ) 94 = ___________ in exponential format
              ( 3^x = 94  )

10.  e^5 = 148.882     is ___________ in log format
              (   ln(148.882) = 5  )

12.   estimate  log(base 9 )   103 and tell your proces1
                  9^3 = 729  and 9^2 = 81,  so log(base 9 ) is between 2 and 3, but much closer to 2, but since it is a log scale, a good guess would be maybe 2.1 or 2.2

14.  Rewrite using the log product rule:   log(3x^2)
                                log(3) + log(x) + log(x)
16.  Rewrite using log quotient rule:   log(x/3)     
                           log(x) – log(3)

18.  rewrite:  log(5xy/x)
            ( log(5) + log(x) + log(y) ) – log(x)       Note you can still simplify.. before or after you take the logs

20   Rewrite using a single log function:  log(z) – (log(5) + log(x) )
                          log(z/5x)
22   log(x^y) = ____________
           y(log(x))
24.  Solve:    12^y = 55
                 log(12^y) = log(55)   or y(log(12)) = log(55)  or  y(1.079) = 1.74  or  y = 1.74/1.079  or y = 1.61