2010-11 Catalog

Decorative graphic

2010-11 Undergraduate Index A-Z

Have questions about the curriculum? Contact Academic Advising
Tips for Using the Catalog

Research

Research opportunities exist with the mentorship of faculty.

Research Opportunities


Title   Offering Standing Credits Credits When F W S Su Description Preparatory Faculty Days of Week Multiple Standings Start Quarters
Undergraduate Research: Endocrine Disrupters

Maria Bastaki

biology environmental studies health 

Signature Required: Summer

  Research JR - SRJunior - Senior V V Day SuSummer This learning opportunity allows advanced students to participate in laboratory-based research on the activity of chemicals suspected to alter the synthesis or action of endogenous estrogen. The position requires laboratory aptitude and skills with cell biology and biochemistry assays. The work involves cell culture and requires strict asceptic conditions and excellent asceptic technique. Familiarity with handling plasmid DNA and molecular biology techniques is strongly desired. May involve supervised use of low concentrations of radiolabeled reagents. Spectrophotometer use, TLC, and other basic lab techniques are also included. There are also options for non-laboratory research. These require both strong research skills using literature and online resources and the ability to analyze data using Excel spreadsheets. biology, health science Maria Bastaki Junior JR Senior SR Summer
Undergraduate Research in Environmental Studies with A. Styring

Alison Styring

ecology environmental studies field studies 

Signature Required: Fall Winter Spring 

  Research JR - SRJunior - Senior V V Day FFall WWinter SSpring Alison Styring Junior JR Senior SR Fall
Undergraduate Research in Environmental Studies with D. Fischer

Dylan Fischer

ecology environmental studies field studies 

Signature Required: Fall Winter Spring 

  Research JR - SRJunior - Senior V V Day FFall WWinter SSpring plant ecology and physiology, field ecology, restoration ecology Dylan Fischer Junior JR Senior SR Fall
Undergraduate Research in Environmental Studies with E. Thuesen

Erik Thuesen

marine science zoology 

Signature Required: Fall Winter Spring 

  Research JR - SRJunior - Senior V V Day FFall WWinter SSpring Erik Thuesen Junior JR Senior SR Fall
Undergraduate Research in Environmental Studies with G. Chin-Leo

Gerardo Chin-Leo

environmental studies marine science 

Signature Required: Fall Winter Spring 

  Research JR - SRJunior - Senior V V Day FFall WWinter SSpring Gerardo Chin-Leo Junior JR Senior SR Fall
Undergraduate Research in Environmental Studies with J. Longino

John Longino

ecology field studies zoology 

Signature Required: Fall Winter Spring 

  Research JR - SRJunior - Senior V V Day FFall WWinter SSpring entomology, taxonomy and ecology John Longino Junior JR Senior SR Fall
Undergraduate Research in Environmental Studies with L. Nelson

Lin Nelson

community studies environmental studies health 

Signature Required: Fall Winter Spring 

  Research JR - SRJunior - Senior V V Day FFall WWinter SSpring Lin Nelson Junior JR Senior SR Fall
Undergraduate Research in Environmental Studies with M. Henderson

Martha Henderson

community studies environmental studies geography 

Signature Required: Fall Winter Spring 

  Research JR - SRJunior - Senior V V Day FFall WWinter SSpring geography, community studies and other field-based social sciences  Martha Henderson Junior JR Senior SR Fall
Undergraduate Research in Environmental Studies with N. Nadkarni

Nalini Nadkarni

ecology education environmental studies 

Signature Required: Fall Winter Spring 

  Research JR - SRJunior - Senior V V Day FFall WWinter SSpring Nalini Nadkarni Junior JR Senior SR Fall
Undergraduate Research in Scientific Inquiry with A. Brabban

Andrew Brabban

biology 

Signature Required: Fall Winter Spring 

  Research SO - SRSophomore - Senior V V Day FFall WWinter SSpring Rigorous quantitative and qualitative research is an important component of academic learning in Scientific Inquiry. This independent learning opportunity allows advanced students to delve into real-world research with faculty who are currently engaged in specific projects. Students typically begin by working in apprenticeship with faculty or laboratory staff and gradually take on more independent projects within the context of the specific research program as they gain experience. Students can develop vital skills in research design, data acquisition and interpretation, written and oral communication, collaboration, and critical thinking that are valuable for students pursuing a graduate degree or entering the job market. (biotechnology) studies microbiology and biotechnology, focusing particularly on bacteriophages as model organisms in molecular genetics, as major players in microbial ecology and as therapeutically important antimicrobials. His research (in collaboration with phage biologist Elizabeth Kutter) involves approximately 12 students each year who explore bacterial metabolism and the infection process under a variety of environmental conditions, phage ecology and genomics, and the application of phages as antibacterial agents targeting human and animal problems. Current projects include the development of phage treatments to control O157:H7 in the guts of livestock and infections of both humans and dogs. Studies of such infections under anaerobic and stationary-phase conditions and in biofilms are under way, as are studies of phage interactions in cocktails and the sequencing/genomics of phages. Students who commit at least a full year to the research project, enrolling for 4 to 16 credits each quarter, will learn a broad range of microbiology and molecular techniques, with opportunities for internships at the USDA and elsewhere, and to present data at national and international conferences. biology, biotechnology, health sciences. Andrew Brabban Sophomore SO Junior JR Senior SR Fall
Undergraduate Research in Scientific Inquiry with B. Simon

Benjamin Simon

biology 

Signature Required: Fall Winter Spring 

  Research SO - SRSophomore - Senior V V Day FFall WWinter SSpring Rigorous quantitative and qualitative research is an important component of academic learning in Scientific Inquiry. This independent learning opportunity allows advanced students to delve into real-world research with faculty who are currently engaged in specific projects. Students typically begin by working in apprenticeship with faculty or laboratory staff and gradually take on more independent projects within the context of the specific research program as they gain experience. Students can develop vital skills in research design, data acquisition and interpretation, written and oral communication, collaboration, and critical thinking that are valuable for students pursuing a graduate degree or entering the job market. (biology) is interested in immunology, bacterial and viral pathogenesis, vaccine development, and gene therapy applications. Recent focus has been on developing novel methods for vaccine delivery and immune enhancement in finfish. Students with a background in biology and chemistry will gain experience in laboratory research methods, including microbiological techniques, tissue culture, and recombinant DNA technology. Benjamin Simon Sophomore SO Junior JR Senior SR Fall
Undergraduate Research in Scientific Inquiry with C. Barlow

Clyde Barlow

biology chemistry physics 

Signature Required: Fall Winter Spring 

  Research SO - SRSophomore - Senior V V Day FFall WWinter SSpring Rigorous quantitative and qualitative research is an important component of academic learning in Scientific Inquiry. This independent learning opportunity allows advanced students to delve into real-world research with faculty who are currently engaged in specific projects. Students typically begin by working in apprenticeship with faculty or laboratory staff and gradually take on more independent projects within the context of the specific research program as they gain experience. Students can develop vital skills in research design, data acquisition and interpretation, written and oral communication, collaboration, and critical thinking that are valuable for students pursuing a graduate degree or entering the job market. (chemistry) works with biophysical applications of spectroscopy to study physiological processes at the organ level, with direct applications to health problems. Students with backgrounds in biology, chemistry, physics, mathematics or computer science can obtain practical experience in applying their backgrounds to biomedical research problems in an interdisciplinary laboratory environment. Clyde Barlow Sophomore SO Junior JR Senior SR Fall
Undergraduate Research in Scientific Inquiry with C. Coughenour

Christopher Coughenour

chemistry education 

Signature Required: Fall Winter Spring 

  Research SO - SRSophomore - Senior V V Day FFall WWinter SSpring Rigorous quantitative and qualitative research is an important component of academic learning in Scientific Inquiry. This independent learning opportunity allows advanced students to delve into real-world research with faculty who are currently engaged in specific projects. Students typically begin by working in apprenticeship with faculty or laboratory staff and gradually take on more independent projects within the context of the specific research program as they gain experience. Students can develop vital skills in research design, data acquisition and interpretation, written and oral communication, collaboration, and critical thinking that are valuable for students pursuing a graduate degree or entering the job market. (geology) invites students to research sediment dynamics of intertidal areas of south Puget Sound estuaries. The mudflats of the southern inlets within Puget Sound offer accessible natural laboratories in which interested students can study and learn some of the methods of physical estuarine science. This research may be approached from several perspectives, depending on the student's background and interests. One possiblity is to analyze sediment transport and depositional dynamics, whereby flow conditions and sedimentation are closely monitored over a period of weeks or months. Another option would be to analyze the sediment budget of the south Sound and attempt to discern seasonal variation in sediment transport and, perhaps, sediment texture. Either of the outlined options could be related to environmental/ecological analyses with further inspection of mineral/nutrient transport or other methods developed with the student. geology. Christopher Coughenour Sophomore SO Junior JR Senior SR Fall
Undergraduate Research in Scientific Inquiry with C. Dirks

Clarissa Dirks

biology 

Signature Required: Fall Winter Spring 

  Research SO - SRSophomore - Senior V V Day FFall WWinter SSpring Rigorous quantitative and qualitative research is an important component of academic learning in Scientific Inquiry. This independent learning opportunity allows advanced students to delve into real-world research with faculty who are currently engaged in specific projects. Students typically begin by working in apprenticeship with faculty or laboratory staff and gradually take on more independent projects within the context of the specific research program as they gain experience. Students can develop vital skills in research design, data acquisition and interpretation, written and oral communication, collaboration, and critical thinking that are valuable for students pursuing a graduate degree or entering the job market. (biology) aims to better understand the evolutionary principles that underlie the emergence, spread, and containment of infectious disease by studying the co-evolution of retroviruses and their primate hosts. Studying how host characteristics and ecological changes influence virus transmission in lemurs will enable us to address the complex spatial and temporal factors that impact emerging diseases. Students with a background in biology and chemistry will gain experience in molecular biology techniques, including tissue culture and the use of viral vectors. Clarissa Dirks Sophomore SO Junior JR Senior SR Fall
Undergraduate Research in Scientific Inquiry with D. Bopegedera

Dharshi Bopegedera

chemistry education 

Signature Required: Fall Winter Spring 

  Research SO - SRSophomore - Senior V V Day FFall WWinter SSpring Rigorous quantitative and qualitative research is an important component of academic learning in Scientific Inquiry. This independent learning opportunity allows advanced students to delve into real-world research with faculty who are currently engaged in specific projects. Students typically begin by working in apprenticeship with faculty or laboratory staff and gradually take on more independent projects within the context of the specific research program as they gain experience. Students can develop vital skills in research design, data acquisition and interpretation, written and oral communication, collaboration, and critical thinking that are valuable for students pursuing a graduate degree or entering the job market. (chemistry) would like to engage students in two projects: 1) quantitative determination of metals in the stalactites formed in aging concrete using ICP-MS and 2) science and education. Students who are interested in learning about the ICP-MS technique and using it for quantitative analysis will find the first project interesting. Students who have an interest in teaching science and who have completed general chemistry with laboratory would be ideal for the second project. We will work with local teachers to develop lab activities that enhance the science curriculum in local schools. Dharshi Bopegedera Sophomore SO Junior JR Senior SR Fall
Undergraduate Research in Scientific Inquiry with D. McAvity

David McAvity

biology computer science mathematics 

Signature Required: Fall Winter Spring 

  Research SO - SRSophomore - Senior V V Day FFall WWinter SSpring Rigorous quantitative and qualitative research is an important component of academic learning in Scientific Inquiry. This independent learning opportunity allows advanced students to delve into real-world research with faculty who are currently engaged in specific projects. Students typically begin by working in apprenticeship with faculty or laboratory staff and gradually take on more independent projects within the context of the specific research program as they gain experience. Students can develop vital skills in research design, data acquisition and interpretation, written and oral communication, collaboration, and critical thinking that are valuable for students pursuing a graduate degree or entering the job market. (mathematics) is interested in problems in mathematical biology associated with population and evolutionary dynamics. Students working with him will help create computer simulations using agent-based modeling and cellular automata and analyzing non-linear models for the evolution of cooperative behavior in strategic multiplayer evolutionary games. Students should have a strong mathematics or computer science background theoretical biology, computer science, mathematics. David McAvity Sophomore SO Junior JR Senior SR Fall
Undergraduate Research in Scientific Inquiry with D. Morisato

Donald Morisato

biology 

Signature Required: Fall Winter Spring 

  Research SO - SRSophomore - Senior V V Day FFall WWinter SSpring Rigorous quantitative and qualitative research is an important component of academic learning in Scientific Inquiry. This independent learning opportunity allows advanced students to delve into real-world research with faculty who are currently engaged in specific projects. Students typically begin by working in apprenticeship with faculty or laboratory staff and gradually take on more independent projects within the context of the specific research program as they gain experience. Students can develop vital skills in research design, data acquisition and interpretation, written and oral communication, collaboration, and critical thinking that are valuable for students pursuing a graduate degree or entering the job market. (biology) is interested in the developmental biology of the Drosophila embryo, a model system for analyzing how patterning occurs. Maternally encoded signaling pathways establish the anterior-posterior and dorsal-ventral axes. Individual student projects will use a combination of genetic, molecular biological and biochemical approaches to investigate the spatial regulation of this complex process. biology, health sciences. Donald Morisato Sophomore SO Junior JR Senior SR Fall
Undergraduate Research in Scientific Inquiry with E. Zita

EJ Zita

astronomy physics 

Signature Required: Fall Winter Spring 

  Research SO - SRSophomore - Senior V V Day FFall WWinter SSpring Rigorous quantitative and qualitative research is an important component of academic learning in Scientific Inquiry. This independent learning opportunity allows advanced students to delve into real-world research with faculty who are currently engaged in specific projects. Students typically begin by working in apprenticeship with faculty or laboratory staff and gradually take on more independent projects within the context of the specific research program as they gain experience. Students can develop vital skills in research design, data acquisition and interpretation, written and oral communication, collaboration, and critical thinking that are valuable for students pursuing a graduate degree or entering the job market. (physics) studies the Sun and other magnetized plasmas. Do solar changes affect Earth over decades (e.g. Solar Max) to millennia (e.g. climate changes)? Why does the Sun shine a bit more brightly when it is more magnetically active, even though sunspots are dark? Why does the Sun's magnetic field flip every 11 years? Why is the temperature of the Sun’s outer atmosphere millions of degrees higher than that of its surface? We investigate such solar mysteries by analyzing data from solar observatories, and with theory and computer modeling. Students can study solar physics and plasma physics, use simple optical and radio telescopes to observe the Sun from Olympia, and analyze new solar data from telescopes on satellites. Strong research students may be invited to join our summer research team in Olympia and/or Palo Alto, Calif. astronomy, physics, climate studies. EJ Zita Sophomore SO Junior JR Senior SR Fall
Undergraduate Research in Scientific Inquiry with J. Cushing

Judith Cushing

computer science 

Signature Required: Fall Winter Spring 

  Research SO - SRSophomore - Senior V V Day FFall WWinter SSpring Rigorous quantitative and qualitative research is an important component of academic learning in Scientific Inquiry. This independent learning opportunity allows advanced students to delve into real-world research with faculty who are currently engaged in specific projects. Students typically begin by working in apprenticeship with faculty or laboratory staff and gradually take on more independent projects within the context of the specific research program as they gain experience. Students can develop vital skills in research design, data acquisition and interpretation, written and oral communication, collaboration, and critical thinking that are valuable for students pursuing a graduate degree or entering the job market. (computer science) studies how scientists might better use information technology in their research. She would like to work with students who have a background in computer science or one of the sciences (e.g., ecology, biology, chemistry or physics), and who are motivated to explore how new computing paradigms, such as object-oriented systems and new database technologies, can be harnessed to improve the individual and collaborative work of scientists. Judith Cushing Sophomore SO Junior JR Senior SR Fall
Undergraduate Research in Scientific Inquiry with J. Neitzel

James Neitzel

biochemistry 

Signature Required: Fall Winter Spring 

  Research SO - SRSophomore - Senior V V Day FFall WWinter SSpring Rigorous quantitative and qualitative research is an important component of academic learning in Scientific Inquiry. This independent learning opportunity allows advanced students to delve into real-world research with faculty who are currently engaged in specific projects. Students typically begin by working in apprenticeship with faculty or laboratory staff and gradually take on more independent projects within the context of the specific research program as they gain experience. Students can develop vital skills in research design, data acquisition and interpretation, written and oral communication, collaboration, and critical thinking that are valuable for students pursuing a graduate degree or entering the job market. (biochemistry) uses methods from organic and analytical chemistry to study biologically interesting molecules. A major focus of his current work is on fatty acids; in particular, finding spectroscopic and chromatographic methods to identify fatty acids in complex mixtures and to detect changes that occur in fats during processing or storage. This has relevance both for foods as well as in biodiesel production. The other major area of interest is in plant natural products, such as salicylates. Work is in process screening local plants for the presence of these molecules, which are important plant defense signals. Work is also supported in determining the nutritional value of indigenous plants. Students with a background and interest in organic, analytical, or biochemistry could contribute to this work. biochemistry, alternative energy, health sciences. James Neitzel Sophomore SO Junior JR Senior SR Fall
Undergraduate Research in Scientific Inquiry with L. McKinstry

Lydia McKinstry

chemistry 

Signature Required: Fall Winter Spring 

  Research SO - SRSophomore - Senior V V Day FFall WWinter SSpring Rigorous quantitative and qualitative research is an important component of academic learning in Scientific Inquiry. This independent learning opportunity allows advanced students to delve into real-world research with faculty who are currently engaged in specific projects. Students typically begin by working in apprenticeship with faculty or laboratory staff and gradually take on more independent projects within the context of the specific research program as they gain experience. Students can develop vital skills in research design, data acquisition and interpretation, written and oral communication, collaboration, and critical thinking that are valuable for students pursuing a graduate degree or entering the job market. (organic chemistry) is interested in organic synthesis research, including asymmetric synthesis methodology, chemical reaction dynamics and small molecule synthesis. One specific study involves the design and synthesis of enzyme inhibitor molecules to be used as effective laboratory tools with which to study the mechanistic steps of programmed cell death (e.g. in cancer cells). Students with a background in organic chemistry and biology will gain experience with the laboratory techniques of organic synthesis as well as the techniques of spectroscopy. chemistry, health sciences. Lydia McKinstry Sophomore SO Junior JR Senior SR Fall
Undergraduate Research in Scientific Inquiry with M. Bastaki

Maria Bastaki

environmental studies health physiology 

Signature Required: Fall Winter Spring 

  Research JR - SRJunior - Senior V V Day FFall WWinter SSpring Maria Bastaki Junior JR Senior SR Fall
Undergraduate Research in Scientific Inquiry with N. Nelson

Neal Nelson

computer science 

Signature Required: Fall Winter Spring 

  Research SO - SRSophomore - Senior V V Day FFall WWinter SSpring Rigorous quantitative and qualitative research is an important component of academic learning in Scientific Inquiry. This independent learning opportunity allows advanced students to delve into real-world research with faculty who are currently engaged in specific projects. Students typically begin by working in apprenticeship with faculty or laboratory staff and gradually take on more independent projects within the context of the specific research program as they gain experience. Students can develop vital skills in research design, data acquisition and interpretation, written and oral communication, collaboration, and critical thinking that are valuable for students pursuing a graduate degree or entering the job market. (computer science)is interested in working with advanced computer topics and current problems in the application of computing to the sciences. His areas of interest include simulations of advanced architectures for distributed computing, advanced programming languages and compilers, programming languages for concurrent and parallel computing, and hardware modeling languages. Neal Nelson Sophomore SO Junior JR Senior SR Fall
Undergraduate Research in Scientific Inquiry with P. Schofield

Paula Schofield

chemistry 

Signature Required: Fall Winter Spring 

  Research SO - SRSophomore - Senior V V Day FFall WWinter SSpring Rigorous quantitative and qualitative research is an important component of academic learning in Scientific Inquiry. This independent learning opportunity allows advanced students to delve into real-world research with faculty who are currently engaged in specific projects. Students typically begin by working in apprenticeship with faculty or laboratory staff and gradually take on more independent projects within the context of the specific research program as they gain experience. Students can develop vital skills in research design, data acquisition and interpretation, written and oral communication, collaboration, and critical thinking that are valuable for students pursuing a graduate degree or entering the job market. (organic, polymer, materials chemistry) is interested in the interdisciplinary fields of biodegradable plastics and biomedical polymers. Research in the field of biodegradable plastics is becoming increasingly important to replace current petroleum-derived materials, and to reduce the environmental impact of plastic wastes. Modification of starch through copolymerization and use of bacterial polyesters show promise in this endeavor. Specific projects within biomedical polymers involve the synthesis of poly (lactic acid) copolymers that have potential for use in tissue engineering. Students with a background in chemistry and biology will gain experience in the synthesis and characterization of these novel polymer materials. Students will present their work at American Chemical Society (ACS) conferences. Paula Schofield Sophomore SO Junior JR Senior SR Fall
Undergraduate Research in Scientific Inquiry with R. Sunderman

Rebecca Sunderman

chemistry 

Signature Required: Fall Winter Spring 

  Research SO - SRSophomore - Senior V V Day FFall WWinter SSpring Rigorous quantitative and qualitative research is an important component of academic learning in Scientific Inquiry. This independent learning opportunity allows advanced students to delve into real-world research with faculty who are currently engaged in specific projects. Students typically begin by working in apprenticeship with faculty or laboratory staff and gradually take on more independent projects within the context of the specific research program as they gain experience. Students can develop vital skills in research design, data acquisition and interpretation, written and oral communication, collaboration, and critical thinking that are valuable for students pursuing a graduate degree or entering the job market. (inorganic/materials chemistry and physical chemistry) is interested in the synthesis and property characterization of new bismuth-containing materials. These compounds have been characterized as electronic conductors, attractive activators for luminescent materials, second harmonic generators and oxidation catalysts for several organic compounds. Traditional solid-state synthesis methods will be utilized to prepare new complex bismuth oxides. Once synthesized, powder x-ray diffraction patterns will be obtained and material properties such as conductivity, melting point, biocidal tendency, coherent light production and magnetic behavior will be examined when appropriate. Rebecca Sunderman Sophomore SO Junior JR Senior SR Fall
Undergraduate Research in Scientific Inquiry with R. Weiss

Richard Weiss

computer science mathematics physics 

Signature Required: Fall Winter Spring 

  Research SO - SRSophomore - Senior V V Day FFall WWinter SSpring Rigorous quantitative and qualitative research is an important component of academic learning in Scientific Inquiry. This independent learning opportunity allows advanced students to delve into real-world research with faculty who are currently engaged in specific projects. Students typically begin by working in apprenticeship with faculty or laboratory staff and gradually take on more independent projects within the context of the specific research program as they gain experience. Students can develop vital skills in research design, data acquisition and interpretation, written and oral communication, collaboration, and critical thinking that are valuable for students pursuing a graduate degree or entering the job market. (computer science and mathematics) has several ongoing projects in computer architecture, vision, robotics, artificial intelligence and security. One of his projects in computer vision is recovering three-dimensional information from multiple images. He is also interested in applying machine learning to visual recognition problems, including facial expressions. One of the computer architecture problems that he has worked on is the simulation of hardware faults and techniques for fault correction. In addition, he is open to working with students who have their own ideas for projects in these and related areas.  Richard Weiss Sophomore SO Junior JR Senior SR Fall
Undergraduate Research in Scientific Inquiry with S. Shulman

Sheryl Shulman

computer science 

Signature Required: Fall Winter Spring 

  Research SO - SRSophomore - Senior V V Day FFall WWinter SSpring Rigorous quantitative and qualitative research is an important component of academic learning in Scientific Inquiry. This independent learning opportunity allows advanced students to delve into real-world research with faculty who are currently engaged in specific projects. Students typically begin by working in apprenticeship with faculty or laboratory staff and gradually take on more independent projects within the context of the specific research program as they gain experience. Students can develop vital skills in research design, data acquisition and interpretation, written and oral communication, collaboration, and critical thinking that are valuable for students pursuing a graduate degree or entering the job market. (computer science) isinterested in working with advanced computer topics and current problems in the application of computing to the sciences. Her areas of interest include simulations of advanced architectures for distributed computing, advanced programming languages and compilers, programming languages for concurrent and parallel computing, and hardware modeling languages. Sheryl Shulman Sophomore SO Junior JR Senior SR Fall
Undergraduate Research: Organic Chemistry

Lydia McKinstry

chemistry 

Signature Required: Summer

  Research SO - SRSophomore - Senior V V Day, Evening and Weekend SuSummer This program is intended for students with a solid foundation and interest in organic chemistry. The overall goal is to offer a research opportunity where students can gain real, hands-on experience with advanced chemical research techniques and methods. Students will develop their skills in the theory and practice of advanced organic synthesis by working in apprenticeship with chemistry faculty on an ongoing faculty-designed research project or on a student-designed research project. This laboratory-based work may involve complex reaction techniques including the handling of air- and moisture-sensitive reagents, chromatography, and application of instrumental analysis techniques in the characterization of synthesized compounds. The analytical instrumentation used may include the gas chromatograph-mass spectrometer (GC-MS), the infrared (FT-IR) spectrometer and the nuclear magnetic resonance (FT-NMR) spectrometer. Lydia McKinstry Sophomore SO Junior JR Senior SR Summer